163 research outputs found

    Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

    Get PDF
    To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation framework, the problem of symbol time offset (STO) and carrier frequency offset (CFO) estimation is investigated and synchronization approaches, which can operate in burst and continuous transmissions, are designed. The first part of this work presents the modulation principles of prominent 5G candidate waveforms and then focuses on the GFDM basic and advanced attributes. The GFDM concept is extended towards the use of OQAM, introducing the novel frequency-shift OQAM-GFDM, and a new low complexity model based on signal processing carried out in the time domain. A new prototype filter proposal highlights the benefits obtained in terms of a reduced out-of-band (OOB) radiation and more attractive hardware implementation cost. With proper parameterization of the advanced GFDM, the achieved gains are applicable to other filtered OFDM waveforms. In the second part, a search approach for estimating STO and CFO in GFDM is evaluated. A self-interference metric is proposed to quantify the effective SNR penalty caused by the residual time and frequency misalignment or intrinsic inter-symbol interference (ISI) and inter-carrier interference (ICI) for arbitrary pulse shape design in GFDM. In particular, the ICI can be used as a non-data aided approach for frequency estimation. Then, GFDM training sequences, defined either as an isolated preamble or embedded as a midamble or pseudo-circular pre/post-amble, are designed. Simulations show better OOB emission and good estimation results, either comparable or superior, to state-of-the-art OFDM system in wireless channels

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Compensation of Physical Impairments in Multi-Carrier Communications

    Get PDF
    Among various multi-carrier transmission techniques, orthogonal frequency-division multiplexing (OFDM) is currently a popular choice in many wireless communication systems. This is mainly due to its numerous advantages, including resistance to multi-path distortions by using the cyclic prefix (CP) and a simple one-tap channel equalization, and efficient implementations based on the fast Fourier and inverse Fourier transforms. However, OFDM also has disadvantages which limit its use in some applications. First, the high out-of-band (OOB) emission in OFDM due to the inherent rectangular shaping filters poses a challenge for opportunistic and dynamic spectrum access where multiple users are sharing a limited transmission bandwidth. Second, a strict orthogonal synchronization between sub-carriers makes OFDM less attractive in low-power communication systems. Furthermore, the use of the CP in OFDM reduces the spectral efficiency and thus it may not be suitable for short-packet and low-latency transmission applications. Generalized frequency division multiplexing (GFDM) and circular filter-bank multi-carrier offset quadrature amplitude modulation (CFBMC-OQAM) have recently been considered as alternatives to OFDM for the air interface of wireless communication systems because they can overcome certain disadvantages in OFDM. Specifically, these two systems offer a flexibility in choosing the shaping filters so that the high OOB emission in OFDM can be avoided. Moreover, the strict orthogonality requirement in OFDM is relaxed in GFDM and CFBMC-OQAM which are, respectively, non-orthogonal and real-field orthogonal systems. Although a CP is also used in these two systems, the CP is added for a block of many symbols instead of only one symbol as in OFDM, which, therefore, improves the spectral efficiency. Given that the performance of a wireless communication system is affected by various physical impairments such as phase noise (PN), in-phase and quadrature (IQ) imbalance and imperfect channel estimation, this thesis proposes a number of novel signal processing algorithms to compensate for physical impairments in multi-carrier communication systems, including OFDM, GFDM and CFBMC-OQAM. The first part of the thesis examines the use of OFDM in full-duplex (FD) communication under the presence of PN, IQ imbalance and nonlinearities. FD communication is a promising technique since it can potentially double the spectral efficiency of the conventional half-duplex (HD) technique. However, the main challenge in implementing an FD wireless device is to cope with the self-interference (SI) imposed by the device's own transmission. The implementation of SI cancellation (SIC) faces many technical issues due to the physical impairments. In this part of research, an iterative algorithm is proposed in which the SI cancellation and detection of the desired signal benefit from each other. Specifically, in each iteration, the SI cancellation performs a widely linear estimation of the SI channel and compensates for the physical impairments to improve the detection performance of the desired signal. The detected desired signal is in turn removed from the received signal to improve SI channel estimation and SI cancellation in the next iteration. Results obtained show that the proposed algorithm significantly outperforms existing algorithms in SI cancellation and detection of the desired signal. In the next part of the thesis, the impact of PN and its compensation for CFBMC-OQAM systems are considered. The sources of performance degradation are first quantified. Then, a two-stage PN compensation algorithm is proposed. In the first stage, the channel frequency response and PN are estimated based on the transmission of a preamble, which is designed to minimize the channel mean squared error (MSE). In the second stage the PN compensation is performed using the estimate obtained from the first stage together with the transmitted pilot symbols. Simulation results obtained under practical scenarios show that the proposed algorithm effectively estimates the channel frequency response and compensates for the PN. The proposed algorithm is also shown to outperform an existing algorithm that implements iterative PN compensation when the PN impact is high. As a further development from the second part, the third part of the thesis considers the impacts of both PN and IQ imbalance and proposes a unified two-stage compensation algorithm for a general multi-carrier system, which can include OFDM, GFDM and CFBMC-OQAM. Specifically, in the first stage, the channel impulse response and IQ imbalance parameters are first estimated based on the transmission of a preamble. Given the estimates obtained from the first stage, in the second stage the IQ imbalance and PN are compensated in that order based on the pilot symbols for the rest of data transmission blocks. The preamble is designed such that the estimation of IQ imbalance does not depend on the channel and PN estimation errors. The proposed algorithm is then further extended to a multiple-input multiple-output (MIMO) system. For such a MIMO system, the preamble design is generalized so that the multiple IQ imbalances as well as channel impulse responses can be effectively estimated based on a single preamble block. Simulation results are presented and discussed in a variety of scenarios to show the effectiveness of the proposed algorithm

    Real-Time Waveform Prototyping

    Get PDF
    Mobile Netzwerke der fünften Generation zeichen sich aus durch vielfältigen Anforderungen und Einsatzszenarien. Drei unterschiedliche Anwendungsfälle sind hierbei besonders relevant: 1) Industrie-Applikationen fordern Echtzeitfunkübertragungen mit besonders niedrigen Ausfallraten. 2) Internet-of-things-Anwendungen erfordern die Anbindung einer Vielzahl von verteilten Sensoren. 3) Die Datenraten für Anwendung wie z.B. der Übermittlung von Videoinhalten sind massiv gestiegen. Diese zum Teil gegensätzlichen Erwartungen veranlassen Forscher und Ingenieure dazu, neue Konzepte und Technologien für zukünftige drahtlose Kommunikationssysteme in Betracht zu ziehen. Ziel ist es, aus einer Vielzahl neuer Ideen vielversprechende Kandidatentechnologien zu identifizieren und zu entscheiden, welche für die Umsetzung in zukünftige Produkte geeignet sind. Die Herausforderungen, diese Anforderungen zu erreichen, liegen jedoch jenseits der Möglichkeiten, die eine einzelne Verarbeitungsschicht in einem drahtlosen Netzwerk bieten kann. Daher müssen mehrere Forschungsbereiche Forschungsideen gemeinsam nutzen. Diese Arbeit beschreibt daher eine Plattform als Basis für zukünftige experimentelle Erforschung von drahtlosen Netzwerken unter reellen Bedingungen. Es werden folgende drei Aspekte näher vorgestellt: Zunächst erfolgt ein Überblick über moderne Prototypen und Testbed-Lösungen, die auf großes Interesse, Nachfrage, aber auch Förderungsmöglichkeiten stoßen. Allerdings ist der Entwicklungsaufwand nicht unerheblich und richtet sich stark nach den gewählten Eigenschaften der Plattform. Der Auswahlprozess ist jedoch aufgrund der Menge der verfügbaren Optionen und ihrer jeweiligen (versteckten) Implikationen komplex. Daher wird ein Leitfaden anhand verschiedener Beispiele vorgestellt, mit dem Ziel Erwartungen im Vergleich zu den für den Prototyp erforderlichen Aufwänden zu bewerten. Zweitens wird ein flexibler, aber echtzeitfähiger Signalprozessor eingeführt, der auf einer software-programmierbaren Funkplattform läuft. Der Prozessor ermöglicht die Rekonfiguration wichtiger Parameter der physikalischen Schicht während der Laufzeit, um eine Vielzahl moderner Wellenformen zu erzeugen. Es werden vier Parametereinstellungen 'LLC', 'WiFi', 'eMBB' und 'IoT' vorgestellt, um die Anforderungen der verschiedenen drahtlosen Anwendungen widerzuspiegeln. Diese werden dann zur Evaluierung der die in dieser Arbeit vorgestellte Implementierung herangezogen. Drittens wird durch die Einführung einer generischen Testinfrastruktur die Einbeziehung externer Partner aus der Ferne ermöglicht. Das Testfeld kann hier für verschiedenste Experimente flexibel auf die Anforderungen drahtloser Technologien zugeschnitten werden. Mit Hilfe der Testinfrastruktur wird die Leistung des vorgestellten Transceivers hinsichtlich Latenz, erreichbarem Durchsatz und Paketfehlerraten bewertet. Die öffentliche Demonstration eines taktilen Internet-Prototypen, unter Verwendung von Roboterarmen in einer Mehrbenutzerumgebung, konnte erfolgreich durchgeführt und bei mehreren Gelegenheiten präsentiert werden.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part listThe demand to achieve higher data rates for the Enhanced Mobile Broadband scenario and novel fifth generation use cases like Ultra-Reliable Low-Latency and Massive Machine-type Communications drive researchers and engineers to consider new concepts and technologies for future wireless communication systems. The goal is to identify promising candidate technologies among a vast number of new ideas and to decide, which are suitable for implementation in future products. However, the challenges to achieve those demands are beyond the capabilities a single processing layer in a wireless network can offer. Therefore, several research domains have to collaboratively exploit research ideas. This thesis presents a platform to provide a base for future applied research on wireless networks. Firstly, by giving an overview of state-of-the-art prototypes and testbed solutions. Secondly by introducing a flexible, yet real-time physical layer signal processor running on a software defined radio platform. The processor enables reconfiguring important parameters of the physical layer during run-time in order to create a multitude of modern waveforms. Thirdly, by introducing a generic test infrastructure, which can be tailored to prototype diverse wireless technology and which is remotely accessible in order to invite new ideas by third parties. Using the test infrastructure, the performance of the flexible transceiver is evaluated regarding latency, achievable throughput and packet error rates.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part lis

    High mobility in OFDM based wireless communication systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has been adopted as the transmission scheme in most of the wireless systems we use on a daily basis. It brings with it several inherent advantages that make it an ideal waveform candidate in the physical layer. However, OFDM based wireless systems are severely affected in High Mobility scenarios. In this thesis, we investigate the effects of mobility on OFDM based wireless systems and develop novel techniques to estimate the channel and compensate its effects at the receiver. Compressed Sensing (CS) based channel estimation techniques like the Rake Matching Pursuit (RMP) and the Gradient Rake Matching Pursuit (GRMP) are developed to estimate the channel in a precise, robust and computationally efficient manner. In addition to this, a Cognitive Framework that can detect the mobility in the channel and configure an optimal estimation scheme is also developed and tested. The Cognitive Framework ensures a computationally optimal channel estimation scheme in all channel conditions. We also demonstrate that the proposed schemes can be adapted to other wireless standards easily. Accordingly, evaluation is done for three current broadcast, broadband and cellular standards. The results show the clear benefit of the proposed schemes in enabling high mobility in OFDM based wireless communication systems.Orthogonal Frequency Division Multiplexing (OFDM) wurde als Übertragungsschema in die meisten drahtlosen Systemen, die wir täglich verwenden, übernommen. Es bringt mehrere inhärente Vorteile mit sich, die es zu einem idealen Waveform-Kandidaten in der Bitübertragungsschicht (Physical Layer) machen. Allerdings sind OFDM-basierte drahtlose Systeme in Szenarien mit hoher Mobilität stark beeinträchtigt. In dieser Arbeit untersuchen wir die Auswirkungen der Mobilität auf OFDM-basierte drahtlose Systeme und entwickeln neuartige Techniken, um das Verhalten des Kanals abzuschätzen und seine Auswirkungen am Empfänger zu kompensieren. Auf Compressed Sensing (CS) basierende Kanalschätzverfahren wie das Rake Matching Pursuit (RMP) und das Gradient Rake Matching Pursuit (GRMP) werden entwickelt, um den Kanal präzise, robust und rechnerisch effizient abzuschätzen. Darüber hinaus wird ein Cognitive Framework entwickelt und getestet, das die Mobilität im Kanal erkennt und ein optimales Schätzungsschema konfiguriert. Das Cognitive Framework gewährleistet ein rechnerisch optimales Kanalschätzungsschema für alle möglichen Kanalbedingungen. Wir zeigen außerdem, dass die vorgeschlagenen Schemata auch leicht an andere Funkstandards angepasst werden können. Dementsprechend wird eine Evaluierung für drei aktuelle Rundfunk-, Breitband- und Mobilfunkstandards durchgeführt. Die Ergebnisse zeigen den klaren Vorteil der vorgeschlagenen Schemata bei der Ermöglichung hoher Mobilität in OFDM-basierten drahtlosen Kommunikationssystemen

    Channel estimation techniques for next generation mobile communication systems

    Get PDF
    Mención Internacional en el título de doctorWe are witnessing a revolution in wireless technology, where the society is demanding new services, such as smart cities, autonomous vehicles, augmented reality, etc. These challenging services not only are demanding an enormous increase of data rates in the range of 1000 times higher, but also they are real-time applications with an important delay constraint. Furthermore, an unprecedented number of different machine-type devices will be also connected to the network, known as Internet of Things (IoT), where they will be transmitting real-time measurements from different sensors. In this context, the Third Generation Partnership Project (3GPP) has already developed the new Fifth Generation (5G) of mobile communication systems, which should be capable of satisfying all the requirements. Hence, 5G will provide three key aspects, such as: enhanced mobile broad-band (eMBB) services, massive machine type communications (mMTC) and ultra reliable low latency communications (URLLC). In order to accomplish all the mentioned requirements, it is important to develop new key radio technologies capable of exploiting the wireless environment with a higher efficiency. Orthogonal frequency division multiplexing (OFDM) is the most widely used waveform by the industry, however, it also exhibits high side lobes reducing considerably the spectral efficiency. Therefore, filter-bank multi-carrier combined with offset quadrature amplitude modulation (FBMC-OQAM) is a waveform candidate to replace OFDM due to the fact that it provides extremely low out-ofband emissions (OBE). The traditional spectrum frequencies range is close to saturation, thus, there is a need to exploit higher bands, such as millimeter waves (mm-Wave), making possible the deployment of ultra broad-band services. However, the high path loss in these bands increases the blockage probability of the radio-link, forcing us to use massive multiple-input multiple-output (MIMO) systems in order to increase either the diversity or capacity of the overall link. All these emergent radio technologies can make 5G a reality. However, all their benefits can be only exploited under the knowledge and availability of the channel state information (CSI) in order to compensate the effects produced by the channel. The channel estimation process is a well known procedure in the area of signal processing for communications, where it is a challenging task due to the fact that we have to obtain a good estimator, maintaining at the same time the efficiency and reduced complexity of the system and obtaining the results as fast as possible. In FBMC-OQAM, there are several proposed channel estimation techniques, however, all of them required a high number of operations in order to deal with the self-interference produced by the prototype filter, hence, increasing the complexity. The existing channel estimation and equalization techniques for massive MIMO are in general too complex due to the large number of antennas, where we must estimate the channel response of each antenna of the array and perform some prohibitive matrix inversions to obtain the equalizers. Besides, for the particular case of mm-Wave, the existing techniques either do not adapt well to the dynamic ranges of signal-to-noise ratio (SNR) scenarios or they assume some approximations which reduce the quality of the estimator. In this thesis, we focus on the channel estimation for different emerging techniques that are capable of obtaining a better performance with a lower number of operations, suitable for low complexity devices and for URLLC. Firstly, we proposed new pilot sequences for FBMC-OQAM enabling the use of a simple averaging process in order to obtain the CSI. We show that our technique outperforms the existing ones in terms of complexity and performance. Secondly, we propose an alternative low-complexity way of computing the precoding/postcoding equalizer under the scenario of massive MIMO, keeping the quality of the estimator. Finally, we propose a new channel estimation technique for massive MIMO for mm-Wave, capable of adapting to very variable scenarios in terms of SNR and outperforming the existing techniques. We provide some analysis of the mean squared error (MSE) and complexity of each proposed technique. Furthermore, some numerical results are given in order to provide a better understanding of the problem and solutions.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Antonia María Tulino.- Secretario: Máximo Morales Céspedes.- Vocal: Octavia A. Dobr

    Advanced receiver structures for mobile MIMO multicarrier communication systems

    Get PDF
    Beyond third generation (3G) and fourth generation (4G) wireless communication systems are targeting far higher data rates, spectral efficiency and mobility requirements than existing 3G networks. By using multiple antennas at the transmitter and the receiver, multiple-input multiple-output (MIMO) technology allows improving both the spectral efficiency (bits/s/Hz), the coverage, and link reliability of the system. Multicarrier modulation such as orthogonal frequency division multiplexing (OFDM) is a powerful technique to handle impairments specific to the wireless radio channel. The combination of multicarrier modulation together with MIMO signaling provides a feasible physical layer technology for future beyond 3G and fourth generation communication systems. The theoretical benefits of MIMO and multicarrier modulation may not be fully achieved because the wireless transmission channels are time and frequency selective. Also, high data rates call for a large bandwidth and high carrier frequencies. As a result, an important Doppler spread is likely to be experienced, leading to variations of the channel over very short period of time. At the same time, transceiver front-end imperfections, mobility and rich scattering environments cause frequency synchronization errors. Unlike their single-carrier counterparts, multi-carrier transmissions are extremely sensitive to carrier frequency offsets (CFO). Therefore, reliable channel estimation and frequency synchronization are necessary to obtain the benefits of MIMO OFDM in mobile systems. These two topics are the main research problems in this thesis. An algorithm for the joint estimation and tracking of channel and CFO parameters in MIMO OFDM is developed in this thesis. A specific state-space model is introduced for MIMO OFDM systems impaired by multiple carrier frequency offsets under time-frequency selective fading. In MIMO systems, multiple frequency offsets are justified by mobility, rich scattering environment and large angle spread, as well as potentially separate radio frequency - intermediate frequency chains. An extended Kalman filter stage tracks channel and CFO parameters. Tracking takes place in time domain, which ensures reduced computational complexity, robustness to estimation errors as well as low estimation variance in comparison to frequency domain processing. The thesis also addresses the problem of blind carrier frequency synchronization in OFDM. Blind techniques exploit statistical or structural properties of the OFDM modulation. Two novel approaches are proposed for blind fine CFO estimation. The first one aims at restoring the orthogonality of the OFDM transmission by exploiting the properties of the received signal covariance matrix. The second approach is a subspace algorithm exploiting the correlation of the channel frequency response among the subcarriers. Both methods achieve reliable estimation of the CFO regardless of multipath fading. The subspace algorithm needs extremely small sample support, which is a key feature in the face of time-selective channels. Finally, the Cramér-Rao (CRB) bound is established for the problem in order to assess the large sample performance of the proposed algorithms.reviewe

    Phase-domain Injected Training for Channel Estimation in Constant Envelope OFDM

    Get PDF
    Constant envelope orthogonal frequency division multiplexing (CE-OFDM) is a multi-carrier waveform with 0 dB peak-to-average power ratio (PAPR). This property enables the exploitation of multi-carrier waveforms with non-linear power amplifiers, avoiding the undesirable clipping effects. However, the existing channel estimation techniques designed for OFDM cannot be reused, since the use of a phase modulator makes CE-OFDM a non-linear waveform. Previous works assumed that the channel estimation process relies on the transmission of preambles, and the data symbols are equalized using a frequency domain equalizer (FDE). To avoid the overhead induced by preambles, a phase-domain injected training (PIT) is proposed, where the pilot sequence is embedded in the phase dimension of the data symbols. This novel approach does not waste time and/or frequency resources as in preamble-based schemes. Moreover, it does not require additional power for the training. The received symbols are averaged with a dual procedure, and owing to the particular structure of CE-OFDM, the channel estimates are recovered. Also, the analytical expression of the channel estimation mean squared error (MSE) is derived. Finally, several numerical results illustrate the performance of the proposal, showing that the MSE, bit error rate (BER) and achievable rate are improved, as compared to the existing works.This work was supported by the Spanish National Project IRENE-EARTH under Grant PID2020-115323RBC33/AEI/10.13039/501100011033. The work of Andrea M. Tonello was supported in part by the Chair of Excellence Program of the Universidad Carlos III de Madrid.Publicad
    corecore