8,038 research outputs found

    Bifurcations and synchronization using an integrated programmable chaotic circuit

    Get PDF
    This paper presents a CMOS chip which can act as an autonomous stand-alone unit to generate different real-time chaotic behaviors by changing a few external bias currents. In particular, by changing one of these bias currents, the chip provides different examples of a period-doubling route to chaos. We present experimental orbits and attractors, time waveforms and power spectra measured from the chip. By using two chip units, experiments on synchronization can be carried out as well in real-time. Measurements are presented for the following synchronization schemes: linear coupling, drive-response and inverse system. Experimental statistical characterizations associated to these schemes are also presented. We also outline the possible use of the chip for chaotic encryption of audio signals. Finally, for completeness, the paper includes also a brief description of the chip design procedure and its internal circuitry

    Sufficient Conditions for Fast Switching Synchronization in Time Varying Network Topologies

    Full text link
    In previous work, empirical evidence indicated that a time-varying network could propagate sufficient information to allow synchronization of the sometimes coupled oscillators, despite an instantaneously disconnected topology. We prove here that if the network of oscillators synchronizes for the static time-average of the topology, then the network will synchronize with the time-varying topology if the time-average is achieved sufficiently fast. Fast switching, fast on the time-scale of the coupled oscillators, overcomes the descychnronizing decoherence suggested by disconnected instantaneous networks. This result agrees in spirit with that of where empirical evidence suggested that a moving averaged graph Laplacian could be used in the master-stability function analysis. A new fast switching stability criterion here-in gives sufficiency of a fast-switching network leading to synchronization. Although this sufficient condition appears to be very conservative, it provides new insights about the requirements for synchronization when the network topology is time-varying. In particular, it can be shown that networks of oscillators can synchronize even if at every point in time the frozen-time network topology is insufficiently connected to achieve synchronization.Comment: Submitted to SIAD

    Influence of field-like torque in synchronization of spin torque oscillators

    Full text link
    The magnetization dynamics of two parallelly coupled spin torque oscillators, destabilization of steady states and removal of multistability, are investigated by taking into account the influence of field-like torque. It is shown that the existence of such torque can cancel the effect of damping and can, therefore, cause the oscillators to exhibit synchronized oscillations in response to direct current. Further, our results show that the presence of field-like torque enhances the power and Q-factor of the synchronized oscillations. The validity of the above results is confirmed by numerical and analytical studies based on the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation.Comment: 10 pages, 10 figures, Accepted for Publication in IEEE Transactions on Magnetic

    From synchronization to Lyapunov exponents and back

    Get PDF
    The goal of this paper is twofold. In the first part we discuss a general approach to determine Lyapunov exponents from ensemble- rather than time-averages. The approach passes through the identification of locally stable and unstable manifolds (the Lyapunov vectors), thereby revealing an analogy with generalized synchronization. The method is then applied to a periodically forced chaotic oscillator to show that the modulus of the Lyapunov exponent associated to the phase dynamics increases quadratically with the coupling strength and it is therefore different from zero already below the onset of phase-synchronization. The analytical calculations are carried out for a model, the generalized special flow, that we construct as a simplified version of the periodically forced Rossler oscillator.Comment: Submitted to Physica

    Synchronization and Characterization of an Ultra-Short Laser for Photoemission and Electron-Beam Diagnostics Studies at a Radio Frequency Photoinjector

    Full text link
    A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz master oscillator and a 1-Hz signal use to trigger the radiofrequency system and instrumentation acquisition. The synchronization scheme and performance are detailed. Long-term temporal and intensity drifts are identified and actively suppressed to within 1 ps and 1.5%, respectively. Measurement and optimization of the laser's temporal profile are accomplished using frequency-resolved optical gating.Comment: 16 pages, 17 figures, Preprint submitted to Elsevie

    Controlling cluster synchronization by adapting the topology

    Get PDF
    We suggest an adaptive control scheme for the control of zero-lag and cluster synchronization in delay-coupled networks. Based on the speed-gradient method, our scheme adapts the topology of a network such that the target state is realized. It is robust towards different initial condition as well as changes in the coupling parameters. The emerging topology is characterized by a delicate interplay of excitatory and inhibitory links leading to the stabilization of the desired cluster state. As a crucial parameter determining this interplay we identify the delay time. Furthermore, we show how to construct networks such that they exhibit not only a given cluster state but also with a given oscillation frequency. We apply our method to coupled Stuart-Landau oscillators, a paradigmatic normal form that naturally arises in an expansion of systems close to a Hopf bifurcation. The successful and robust control of this generic model opens up possible applications in a wide range of systems in physics, chemistry, technology, and life science
    corecore