5,672 research outputs found

    A sensing platform for physiological and contextual feedback to tennis athletes

    Get PDF
    In this paper we describe our work on creating a multi-modal sensing platform for providing feedback to tennis coaches and players. The platform includes a fixed installation around a tennis court consisting of a video camera network and a localisation system as well as wearable sensing technology deployed to individual athletes. We describe the various components of this platform and explain how we can capture synchronised multi-modal sensor data streams for games or training sessions. We then describe the content-based retrieval system we are building to facilitate the development of novel coaching tools. We provide some examples of the queries that the system can support, where these queries are chosen to be suitably expressive so as to reflect a coach's complex information needs regarding tennis-related performance factors

    Analysis of signalling pathways using the prism model checker

    Get PDF
    We describe a new modelling and analysis approach for signal transduction networks in the presence of incomplete data. We illustrate the approach with an example, the RKIP inhibited ERK pathway [1]. Our models are based on high level descriptions of continuous time Markov chains: reactions are modelled as synchronous processes and concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis of queries such as if a concentration reaches a certain level, will it remain at that level thereafter? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    Expanding sensor networks to automate knowledge acquisition

    Get PDF
    The availability of accurate, low-cost sensors to scientists has resulted in widespread deployment in a variety of sporting and health environments. The sensor data output is often in a raw, proprietary or unstructured format. As a result, it is often difficult to query multiple sensors for complex properties or actions. In our research, we deploy a heterogeneous sensor network to detect the various biological and physiological properties in athletes during training activities. The goal for exercise physiologists is to quickly identify key intervals in exercise such as moments of stress or fatigue. This is not currently possible because of low level sensors and a lack of query language support. Thus, our motivation is to expand the sensor network with a contextual layer that enriches raw sensor data, so that it can be exploited by a high level query language. To achieve this, the domain expert specifies events in a tradiational event-condition-action format to deliver the required contextual enrichment

    Semi-automatic semantic enrichment of raw sensor data

    Get PDF
    One of the more recent sources of large volumes of generated data is sensor devices, where dedicated sensing equipment is used to monitor events and happenings in a wide range of domains, including monitoring human biometrics. In recent trials to examine the effects that key moments in movies have on the human body, we fitted fitted with a number of biometric sensor devices and monitored them as they watched a range of dierent movies in groups. The purpose of these experiments was to examine the correlation between humans' highlights in movies as observed from biometric sensors, and highlights in the same movies as identified by our automatic movie analysis techniques. However,the problem with this type of experiment is that both the analysis of the video stream and the sensor data readings are not directly usable in their raw form because of the sheer volume of low-level data values generated both from the sensors and from the movie analysis. This work describes the semi-automated enrichment of both video analysis and sensor data and the mechanism used to query the data in both centralised environments, and in a peer-to-peer architecture when the number of sensor devices grows to large numbers. We present and validate a scalable means of semi-automating the semantic enrichment of sensor data, thereby providing a means of large-scale sensor management

    An active learning and training environment for database programming

    Get PDF
    Active learning facilitated through interactive, self-controlled learning environments differs substantially from traditional instructor-oriented, classroom-based teaching. We present a tool for database programming that integrates knowledge learning and skills training. How these tools are used most effectively is still an open question. Therefore, we discuss analysis and evaluation of these Web-based environments focusing on different aspects of learning behaviour and tool usage. Motivation, acceptance of the learning approach, learning organisation and actual tool usage are aspects of behaviour that require different techniques to be used

    Integrating sensor streams in pHealth networks

    Get PDF
    Personal Health (pHealth) sensor networks are generally used to monitor the wellbeing of both athletes and the general public to inform health specialists of future and often serious ailments. The problem facing these domain experts is the scale and quality of data they must search in order to extract meaningful results. By using peer-to-peer sensor architectures and a mechanism for reducing the search space, we can, to some extent, address the scalability issue. However, synchronisation and normalisation of distributed sensor streams remains a problem in many networks. In the case of pHealth sensor networks, it is crucial for experts to align multiple sensor readings before query or data mining activities can take place. This paper presents a system for clustering and synchronising sensor streams in preparation for user queries

    A Supervisory Control Algorithm Based on Property-Directed Reachability

    Full text link
    We present an algorithm for synthesising a controller (supervisor) for a discrete event system (DES) based on the property-directed reachability (PDR) model checking algorithm. The discrete event systems framework is useful in both software, automation and manufacturing, as problems from those domains can be modelled as discrete supervisory control problems. As a formal framework, DES is also similar to domains for which the field of formal methods for computer science has developed techniques and tools. In this paper, we attempt to marry the two by adapting PDR to the problem of controller synthesis. The resulting algorithm takes as input a transition system with forbidden states and uncontrollable transitions, and synthesises a safe and minimally-restrictive controller, correct-by-design. We also present an implementation along with experimental results, showing that the algorithm has potential as a part of the solution to the greater effort of formal supervisory controller synthesis and verification.Comment: 16 pages; presented at Haifa Verification Conference 2017, the final publication is available at Springer via https://doi.org/10.1007/978-3-319-70389-3_

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes
    corecore