860 research outputs found

    Distributed Network Anomaly Detection on an Event Processing Framework

    Get PDF
    Network Intrusion Detection Systems (NIDS) are an integral part of modern data centres to ensure high availability and compliance with Service Level Agreements (SLAs). Currently, NIDS are deployed on high-performance, high-cost middleboxes that are responsible for monitoring a limited section of the network. The fast increasing size and aggregate throughput of modern data centre networks have come to challenge the current approach to anomaly detection to satisfy the fast growing compute demand. In this paper, we propose a novel approach to distributed intrusion detection systems based on the architecture of recently proposed event processing frameworks. We have designed and implemented a prototype system using Apache Storm to show the benefits of the proposed approach as well as the architectural differences with traditional systems. Our system distributes modules across the available devices within the network fabric and uses a centralised controller for orchestration, management and correlation. Following the Software Defined Networking (SDN) paradigm, the controller maintains a complete view of the network but distributes the processing logic for quick event processing while performing complex event correlation centrally. We have evaluated the proposed system using publicly available data centre traces and demonstrated that the system can scale with the network topology while providing high performance and minimal impact on packet latency

    Fronthaul evolution: From CPRI to Ethernet

    Get PDF
    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Bio-Inspired Tools for a Distributed Wireless Sensor Network Operating System

    Get PDF
    The problem which I address in this thesis is to find a way to organise and manage a network of wireless sensor nodes using a minimal amount of communication. To find a solution I explore the use of Bio-inspired protocols to enable WSN management while maintaining a low communication overhead. Wireless Sensor Networks (WSNs) are loosely coupled distributed systems comprised of low-resource, battery powered sensor nodes. The largest problem with WSN management is that communication is the largest consumer of a sensor node’s energy. WSN management systems need to use as little communication as possible to prolong their operational lifetimes. This is the Wireless Sensor Network Management Problem. This problem is compounded because current WSN management systems glue together unrelated protocols to provide system services causing inter-protocol interference. Bio-inspired protocols provide a good solution because they enable the nodes to self-organise, use local area communication, and can combine their communication in an intelligent way with minimal increase in communication. I present a combined protocol and MAC scheduler to enable multiple service protocols to function in a WSN at the same time without causing inter-protocol interference. The scheduler is throughput optimal as long as the communication requirements of all of the protocols remain within the communication capacity of the network. I show that the scheduler improves a dissemination protocol’s performance by 35%. A bio-inspired synchronisation service is presented which enables wireless sensor nodes to self organise and provide a time service. Evaluation of the protocol shows an 80% saving in communication over similar bio-inspired synchronisation approaches. I then add an information dissemination protocol, without significantly increasing communication. This is achieved through the ability of our bio-inspired algorithms to combine their communication in an intelligent way so that they are able to offer multiple services without requiring a great deal of inter-node communication.Open Acces

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided
    • 

    corecore