227 research outputs found

    Underwater Multirobot Cooperative Intervention MAC Protocol

    Get PDF
    This work introduces a Medium Access Control (MAC) protocol designed to allow a group of underwater robots that share a wireless communication channel to effectively communicate with each other. The goal of the Underwater Multirobot Cooperative Intervention MAC (UMCI-MAC) protocol presented in this work is to minimize the end to end delay and the jitter. The access to the medium in UMCI-MAC follows a Time Division Multiple Access (TDMA) strategy which is arbitrated by a master, which also has the capability to prioritize the transmission of some nodes over the rest of the network. Two experiments have been carried out with a team of four Autonomous Underwater Vehicles (AUV) in order to compare this protocol with Aloha-CS and S-FAMA MAC protocols used in Underwater Wireless Sensor Networks (UWSN). In the first experiment, the communications and the AUVs have been simulated using UWSim-NET. The objective of this experiment was to evaluate all three protocols in terms of delay, jitter, efficiency, collisions and throughput depending on the size of the data packet and the rate of packet delivery in the application layer for each robot. The results of this experiment proved that UMCI-MAC successfully avoids packet collisions and outperforms the other two protocols in terms of delay, jitter and efficiency. The second experiment consisted of a Hardware In The Loop (HIL) teleoperation of a team of four robots. One of the AUVs was a real BlueROV in a water tank, while the remaining AUVs and the communications were simulated with UWSim-NET. It demonstrates the impact of the MAC protocols in underwater acoustic links. Of the three MAC protocols evaluated in this work, UMCI-MAC was the only one which succeeded in the proposed teleoperation experiment. Thus demonstrating its suitability as a communications protocol in underwater cooperative robotics

    TDA-MAC : TDMA without clock synchronization in underwater acoustic networks

    Get PDF
    This paper investigates the application of underwater acoustic sensor networks for large scale monitoring of the ocean environment. The low propagation speed of acoustic signals presents a fundamental challenge in coordinating the access to the shared communication medium in such networks. In this paper, we propose two medium access control (MAC) protocols, namely, Transmit Delay Allocation MAC (TDA-MAC) and Accelerated TDA-MAC, that are capable of providing time division multiple access (TDMA) to sensor nodes without the need for centralized clock synchronization. A comprehensive simulation study of a network deployed on the sea bed shows that the proposed protocols are capable of closely matching the throughput and packet delay performance of ideal synchronized TDMA. The TDA-MAC protocols also significantly outperform T-Lohi, a classical contention-based MAC protocol for underwater acoustic networks, in terms of network throughput and, in many cases, end-To-end packet delay. Furthermore, the assumption of no clock synchronization among different devices in the network is a major advantage of TDA-MAC over other TDMA-based MAC protocols in the literature. Therefore, it is a feasible networking solution for real-world underwater sensor network deployments

    Underwater Sensor Networks: Applications, Advances, and Challenges

    Get PDF
    This paper examines the main approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize key applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers. We also provide an overview of communications hardware, testbeds, and simulation tools available to the research community

    A Survey of Techniques and Challenges in Underwater Localization

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are expected to support a variety of civilian and military applications. Sensed data can only be interpreted meaningfully when referenced to the location of the sensor, making localization an important problem. While global positioning system (GPS) receivers are commonly used in terrestrial WSNs to achieve this, this is infeasible in UWSNs as GPS signals do not propagate through water. Acoustic communications is the most promising mode of communication underwater. However, underwater acoustic channels are characterized by harsh physical layer conditions with low bandwidth, high propagation delay and high bit error rate. Moreover, the variable speed of sound and the non-negligible node mobility due to water currents pose a unique set of challenges for localization in UWSNs. In this paper, we provide a survey of techniques and challenges in localization specifically for UWSNs. We categorize them into (i) range-based vs. range-free techniques; (ii) techniques that rely on static reference nodes vs. those who also rely on mobile reference nodes, and (iii) single-stage vs. multi-stage schemes. We compare the schemes in terms of localization speed, accuracy, coverage and communication costs. Finally, we provide an outlook on the challenges that should be, but have yet been, addressed. (C) 2011 Elsevier Ltd. All rights reserved

    Time Synchronization in Mobile Underwater Sensor Network

    Get PDF
    Time synchronization plays a critical role in underwater sensor networks (UWSNs). Sensor network consists of static and mobile underwater sensor nodes. Although many time-synchronization protocols have been proposed for terrestrial wireless sensor networks, none of them can be directly applied to UWSNs. This is because most of these protocols do not consider long propagation delays and sensor node mobility, which are important attributes in UWSNs. In addition, UWSNs usually have high requirements in energy efficiency. In this paper, time-synchronization scheme is proposed in mobile underwater sensor networks. The scheme proposes a framework to estimate the Doppler shift caused by mobility, more precisely through accounting the impact of the skew. The time delay and frequency are estimated accurately. To refine the relative velocity estimation, and consequently to enhance the synchronization accuracy, the Kalman filter is employed. Thus by estimating the velocity, the accuracy has been increased
    • …
    corecore