880 research outputs found

    Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems

    Get PDF
    In this paper we explore the practical use of the corner transfer matrix and its higher-dimensional generalization, the corner tensor, to develop tensor network algorithms for the classical simulation of quantum lattice systems of infinite size. This exploration is done mainly in one and two spatial dimensions (1d and 2d). We describe a number of numerical algorithms based on corner matri- ces and tensors to approximate different ground state properties of these systems. The proposed methods make also use of matrix product operators and projected entangled pair operators, and naturally preserve spatial symmetries of the system such as translation invariance. In order to assess the validity of our algorithms, we provide preliminary benchmarking calculations for the spin-1/2 quantum Ising model in a transverse field in both 1d and 2d. Our methods are a plausible alternative to other well-established tensor network approaches such as iDMRG and iTEBD in 1d, and iPEPS and TERG in 2d. The computational complexity of the proposed algorithms is also considered and, in 2d, important differences are found depending on the chosen simulation scheme. We also discuss further possibilities, such as 3d quantum lattice systems, periodic boundary conditions, and real time evolution. This discussion leads us to reinterpret the standard iTEBD and iPEPS algorithms in terms of corner transfer matrices and corner tensors. Our paper also offers a perspective on many properties of the corner transfer matrix and its higher-dimensional generalizations in the light of novel tensor network methods.Comment: 25 pages, 32 figures, 2 tables. Revised version. Technical details on some of the algorithms have been moved to appendices. To appear in PR

    Functional renormalization group approach to correlated fermion systems

    Full text link
    Numerous correlated electron systems exhibit a strongly scale-dependent behavior. Upon lowering the energy scale, collective phenomena, bound states, and new effective degrees of freedom emerge. Typical examples include (i) competing magnetic, charge, and pairing instabilities in two-dimensional electron systems, (ii) the interplay of electronic excitations and order parameter fluctuations near thermal and quantum phase transitions in metals, (iii) correlation effects such as Luttinger liquid behavior and the Kondo effect showing up in linear and non-equilibrium transport through quantum wires and quantum dots. The functional renormalization group is a flexible and unbiased tool for dealing with such scale-dependent behavior. Its starting point is an exact functional flow equation, which yields the gradual evolution from a microscopic model action to the final effective action as a function of a continuously decreasing energy scale. Expanding in powers of the fields one obtains an exact hierarchy of flow equations for vertex functions. Truncations of this hierarchy have led to powerful new approximation schemes. This review is a comprehensive introduction to the functional renormalization group method for interacting Fermi systems. We present a self-contained derivation of the exact flow equations and describe frequently used truncation schemes. Reviewing selected applications we then show how approximations based on the functional renormalization group can be fruitfully used to improve our understanding of correlated fermion systems.Comment: Review article, final version, 59 pages, 28 figure

    Symmetry improvement of 3PI effective actions for O(N) scalar field theory

    Full text link
    [Abridged] n-Particle Irreducible Effective Actions (nnPIEA) are a powerful tool for extracting non-perturbative and non-equilibrium physics from quantum field theories. Unfortunately, practical truncations of nnPIEA can unphysically violate symmetries. Pilaftsis and Teresi (PT) addressed this by introducing a "symmetry improvement" scheme in the context of the 2PIEA for an O(2) scalar theory, ensuring that the Goldstone boson is massless in the broken symmetry phase [A. Pilaftsis and D. Teresi, Nuc.Phys. B 874, 2 (2013), pp. 594--619]. We extend this by introducing a symmetry improved 3PIEA for O(N) theories, for which the basic variables are the 1-, 2- and 3-point correlation functions. This requires the imposition of a Ward identity involving the 3-point function. The method leads to an infinity of physically distinct schemes, though an analogue of d'Alembert's principle is used to single out a unique scheme. The standard equivalence hierarchy of nnPIEA no longer holds with symmetry improvement and we investigate the difference between the symmetry improved 3PIEA and 2PIEA. We present renormalized equations of motion and counter-terms for 2 and 3 loop truncations of the effective action, leaving their numerical solution to future work. We solve the Hartree-Fock approximation and find that our method achieves a middle ground between the unimproved 2PIEA and PT methods. The phase transition predicted by our method is weakly first order and the Goldstone theorem is satisfied. We also show that, in contrast to PT, the symmetry improved 3PIEA at 2 loops does not predict the correct Higgs decay rate, but does at 3 loops. These results suggest that symmetry improvement should not be applied to nnPIEA truncated to <n<n loops. We also show that symmetry improvement is compatible with the Coleman-Mermin-Wagner theorem, a check on the consistency of the formalism.Comment: 27 pages, 15 figures, 2 supplemental Mathematica notebooks. REVTeX 4.1 with amsmath. Updated with minor corrections. Accepted for publication in Phys. Rev.

    Rotating Bose-Einstein condensates: Closing the gap between exact and mean-field solutions

    Full text link
    When a Bose-Einstein condensed cloud of atoms is given some angular momentum, it forms vortices arranged in structures with a discrete rotational symmetry. For these vortex states, the Hilbert space of the exact solution separates into a "primary" space related to the mean-field Gross-Pitaevskii solution and a "complementary" space including the corrections beyond mean-field. Considering a weakly-interacting Bose-Einstein condensate of harmonically-trapped atoms, we demonstrate how this separation can be used to close the conceptual gap between exact solutions for systems with only a few atoms and the thermodynamic limit for which the mean-field is the correct leading-order approximation. Although we illustrate this approach for the case of weak interactions, it is expected to be more generally valid.Comment: 8 pages, 5 figure
    • …
    corecore