2,609 research outputs found

    Faster and better: a machine learning approach to corner detection

    Full text link
    The repeatability and efficiency of a corner detector determines how likely it is to be useful in a real-world application. The repeatability is importand because the same scene viewed from different positions should yield features which correspond to the same real-world 3D locations [Schmid et al 2000]. The efficiency is important because this determines whether the detector combined with further processing can operate at frame rate. Three advances are described in this paper. First, we present a new heuristic for feature detection, and using machine learning we derive a feature detector from this which can fully process live PAL video using less than 5% of the available processing time. By comparison, most other detectors cannot even operate at frame rate (Harris detector 115%, SIFT 195%). Second, we generalize the detector, allowing it to be optimized for repeatability, with little loss of efficiency. Third, we carry out a rigorous comparison of corner detectors based on the above repeatability criterion applied to 3D scenes. We show that despite being principally constructed for speed, on these stringent tests, our heuristic detector significantly outperforms existing feature detectors. Finally, the comparison demonstrates that using machine learning produces significant improvements in repeatability, yielding a detector that is both very fast and very high quality.Comment: 35 pages, 11 figure

    Image Feature Information Extraction for Interest Point Detection: A Comprehensive Review

    Full text link
    Interest point detection is one of the most fundamental and critical problems in computer vision and image processing. In this paper, we carry out a comprehensive review on image feature information (IFI) extraction techniques for interest point detection. To systematically introduce how the existing interest point detection methods extract IFI from an input image, we propose a taxonomy of the IFI extraction techniques for interest point detection. According to this taxonomy, we discuss different types of IFI extraction techniques for interest point detection. Furthermore, we identify the main unresolved issues related to the existing IFI extraction techniques for interest point detection and any interest point detection methods that have not been discussed before. The existing popular datasets and evaluation standards are provided and the performances for eighteen state-of-the-art approaches are evaluated and discussed. Moreover, future research directions on IFI extraction techniques for interest point detection are elaborated

    Stereoscopic motion analysis in densely packed clusters: 3D analysis of the shimmering behaviour in Giant honey bees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detailed interpretation of mass phenomena such as human escape panic or swarm behaviour in birds, fish and insects requires detailed analysis of the 3D movements of individual participants. Here, we describe the adaptation of a 3D stereoscopic imaging method to measure the positional coordinates of individual agents in densely packed clusters. The method was applied to study behavioural aspects of shimmering in Giant honeybees, a collective defence behaviour that deters predatory wasps by visual cues, whereby individual bees flip their abdomen upwards in a split second, producing Mexican wave-like patterns.</p> <p>Results</p> <p>Stereoscopic imaging provided non-invasive, automated, simultaneous, <it>in-situ </it>3D measurements of hundreds of bees on the nest surface regarding their thoracic position and orientation of the body length axis. <it>Segmentation </it>was the basis for the <it>stereo matching</it>, which defined correspondences of individual bees in pairs of stereo images. Stereo-matched "agent bees" were re-identified in subsequent frames by the <it>tracking </it>procedure and <it>triangulated </it>into real-world coordinates. These algorithms were required to calculate the three spatial motion components (dx: horizontal, dy: vertical and dz: towards and from the comb) of individual bees over time.</p> <p>Conclusions</p> <p>The method enables the assessment of the 3D positions of individual Giant honeybees, which is not possible with single-view cameras. The method can be applied to distinguish at the individual bee level active movements of the thoraces produced by abdominal flipping from passive motions generated by the moving bee curtain. The data provide evidence that the z-deflections of thoraces are potential cues for colony-intrinsic communication. The method helps to understand the phenomenon of collective decision-making through mechanoceptive synchronization and to associate shimmering with the principles of wave propagation. With further, minor modifications, the method could be used to study aspects of other mass phenomena that involve active and passive movements of individual agents in densely packed clusters.</p

    Expression cartography of human tissues using self organizing maps

    Get PDF
    Background: The availability of parallel, high-throughput microarray and sequencing experiments poses a challenge how to best arrange and to analyze the obtained heap of multidimensional data in a concerted way. Self organizing maps (SOM), a machine learning method, enables the parallel sample- and gene-centered view on the data combined with strong visualization and second-level analysis capabilities. The paper addresses aspects of the method with practical impact in the context of expression analysis of complex data sets.&#xd;&#xa;Results: The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the dimension of expression data from ten thousands of genes to a few thousands of metagenes where each metagene acts as representative of a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of gene sets well corresponding to molecular processes in the respective tissues. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering provide a better signal-to-noise ratio and a better representativeness of the method if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues into essentially three clusters containing nervous, immune system and the remaining tissues. &#xd;&#xa;Conclusions: The global view on the behavior of a few well-defined modules of correlated and differentially expressed genes is more intuitive and more informative than the separate discovery of the expression levels of hundreds or thousands of individual genes. The metagene approach is less sensitive to a priori selection of genes. It can detect a coordinated expression pattern whose components would not pass single-gene significance thresholds and it is able to extract context-dependent patterns of gene expression in complex data sets.&#xd;&#xa

    Expression cartography of human tissues using self organizing maps

    Get PDF
    Background: The availability of parallel, high-throughput microarray and sequencing experiments poses a challenge how to best arrange and to analyze the obtained heap of multidimensional data in a concerted way. Self organizing maps (SOM), a machine learning method, enables the parallel sample- and gene-centered view on the data combined with strong visualization and second-level analysis capabilities. The paper addresses aspects of the method with practical impact in the context of expression analysis of complex data sets.&#xd;&#xa;Results: The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the dimension of expression data from ten thousands of genes to a few thousands of metagenes where each metagene acts as representative of a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of gene sets well corresponding to molecular processes in the respective tissues. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering provide a better signal-to-noise ratio and a better representativeness of the method if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues into essentially three clusters containing nervous, immune system and the remaining tissues. &#xd;&#xa;Conclusions: The global view on the behavior of a few well-defined modules of correlated and differentially expressed genes is more intuitive and more informative than the separate discovery of the expression levels of hundreds or thousands of individual genes. The metagene approach is less sensitive to a priori selection of genes. It can detect a coordinated expression pattern whose components would not pass single-gene significance thresholds and it is able to extract context-dependent patterns of gene expression in complex data sets.&#xd;&#xa

    Pattern identification of biomedical images with time series: contrasting THz pulse imaging with DCE-MRIs

    Get PDF
    Objective We provide a survey of recent advances in biomedical image analysis and classification from emergent imaging modalities such as terahertz (THz) pulse imaging (TPI) and dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) and identification of their underlining commonalities. Methods Both time and frequency domain signal pre-processing techniques are considered: noise removal, spectral analysis, principal component analysis (PCA) and wavelet transforms. Feature extraction and classification methods based on feature vectors using the above processing techniques are reviewed. A tensorial signal processing de-noising framework suitable for spatiotemporal association between features in MRI is also discussed. Validation Examples where the proposed methodologies have been successful in classifying TPIs and DCE-MRIs are discussed. Results Identifying commonalities in the structure of such heterogeneous datasets potentially leads to a unified multi-channel signal processing framework for biomedical image analysis. Conclusion The proposed complex valued classification methodology enables fusion of entire datasets from a sequence of spatial images taken at different time stamps; this is of interest from the viewpoint of inferring disease proliferation. The approach is also of interest for other emergent multi-channel biomedical imaging modalities and of relevance across the biomedical signal processing community

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore