99 research outputs found

    On Symmetry of Independence Polynomials

    Full text link
    An independent set in a graph is a set of pairwise non-adjacent vertices, and alpha(G) is the size of a maximum independent set in the graph G. A matching is a set of non-incident edges, while mu(G) is the cardinality of a maximum matching. If s_{k} is the number of independent sets of cardinality k in G, then I(G;x)=s_{0}+s_{1}x+s_{2}x^{2}+...+s_{\alpha(G)}x^{\alpha(G)} is called the independence polynomial of G (Gutman and Harary, 1983). If sj=sα−js_{j}=s_{\alpha-j}, 0=< j =< alpha(G), then I(G;x) is called symmetric (or palindromic). It is known that the graph G*2K_{1} obtained by joining each vertex of G to two new vertices, has a symmetric independence polynomial (Stevanovic, 1998). In this paper we show that for every graph G and for each non-negative integer k =< mu(G), one can build a graph H, such that: G is a subgraph of H, I(H;x) is symmetric, and I(G*2K_{1};x)=(1+x)^{k}*I(H;x).Comment: 16 pages, 13 figure

    Unimodality Problems in Ehrhart Theory

    Full text link
    Ehrhart theory is the study of sequences recording the number of integer points in non-negative integral dilates of rational polytopes. For a given lattice polytope, this sequence is encoded in a finite vector called the Ehrhart h∗h^*-vector. Ehrhart h∗h^*-vectors have connections to many areas of mathematics, including commutative algebra and enumerative combinatorics. In this survey we discuss what is known about unimodality for Ehrhart h∗h^*-vectors and highlight open questions and problems.Comment: Published in Recent Trends in Combinatorics, Beveridge, A., et al. (eds), Springer, 2016, pp 687-711, doi 10.1007/978-3-319-24298-9_27. This version updated October 2017 to correct an error in the original versio

    On the shape of a pure O-sequence

    Full text link
    An order ideal is a finite poset X of (monic) monomials such that, whenever M is in X and N divides M, then N is in X. If all, say t, maximal monomials of X have the same degree, then X is pure (of type t). A pure O-sequence is the vector, h=(1,h_1,...,h_e), counting the monomials of X in each degree. Equivalently, in the language of commutative algebra, pure O-sequences are the h-vectors of monomial Artinian level algebras. Pure O-sequences had their origin in one of Richard Stanley's early works in this area, and have since played a significant role in at least three disciplines: the study of simplicial complexes and their f-vectors, level algebras, and matroids. This monograph is intended to be the first systematic study of the theory of pure O-sequences. Our work, making an extensive use of algebraic and combinatorial techniques, includes: (i) A characterization of the first half of a pure O-sequence, which gives the exact converse to an algebraic g-theorem of Hausel; (ii) A study of (the failing of) the unimodality property; (iii) The problem of enumerating pure O-sequences, including a proof that almost all O-sequences are pure, and the asymptotic enumeration of socle degree 3 pure O-sequences of type t; (iv) The Interval Conjecture for Pure O-sequences (ICP), which represents perhaps the strongest possible structural result short of an (impossible?) characterization; (v) A pithy connection of the ICP with Stanley's matroid h-vector conjecture; (vi) A specific study of pure O-sequences of type 2, including a proof of the Weak Lefschetz Property in codimension 3 in characteristic zero. As a corollary, pure O-sequences of codimension 3 and type 2 are unimodal (over any field); (vii) An analysis of the extent to which the Weak and Strong Lefschetz Properties can fail for monomial algebras; (viii) Some observations about pure f-vectors, an important special case of pure O-sequences.Comment: iii + 77 pages monograph, to appear as an AMS Memoir. Several, mostly minor revisions with respect to last year's versio
    • …
    corecore