2,478 research outputs found

    Beyond Reynolds: A Constraint-Driven Approach to Cluster Flocking

    Full text link
    In this paper, we present an original set of flocking rules using an ecologically-inspired paradigm for control of multi-robot systems. We translate these rules into a constraint-driven optimal control problem where the agents minimize energy consumption subject to safety and task constraints. We prove several properties about the feasible space of the optimal control problem and show that velocity consensus is an optimal solution. We also motivate the inclusion of slack variables in constraint-driven problems when the global state is only partially observable by each agent. Finally, we analyze the case where the communication topology is fixed and connected, and prove that our proposed flocking rules achieve velocity consensus.Comment: 6 page

    Optimal learning under robustness and time-consistency

    Full text link
    We model learning in a continuous-time Brownian setting where there is prior ambiguity. The associated model of preference values robustness and is time-consistent. It is applied to study optimal learning when the choice between actions can be postponed, at a per-unit-time cost, in order to observe a signal that provides information about an unknown parameter. The corresponding optimal stopping problem is solved in closed form, with a focus on two specific settings: Ellsberg’s two-urn thought experiment expanded to allow learning before the choice of bets, and a robust version of the classical problem of sequential testing of two simple hypotheses about the unknown drift of a Wiener process. In both cases, the link between robustness and the demand for learning is studied.Accepted manuscrip

    Autonomous navigation of ships by combining optimal trajectory planning with informed graph search

    Get PDF
    Autonomous trajectory generation plays an essential role in the navigation of vehicles in space as well as in terrestrial scenarios, i.e. in the air, on solid ground, or water. For the latter, the navigation of ships in ports has specific challenges since ship dynamics are highly nonlinear with limited agility, while the manoeuvre space in ports is limited. Nevertheless, for providing support to humanly designed control strategies, autonomously generated trajectories have not only to be feasible, i.e. collision-free but shall also be optimal with respect to manoeuvre time and control effort. This article presents a novel approach to autonomous trajectory planning on the basis of precomputed and connectable trajectory segments, the so-called motion primitives, and an A*-search algorithm. Sequences of motion primitives provide an initial guess for a subsequent optimization by which optimal trajectories are found even in terrains with many obstacles. We illustrate the approach with different navigation scenarios

    3LP: a linear 3D-walking model including torso and swing dynamics

    Get PDF
    In this paper, we present a new model of biped locomotion which is composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to double support, this model has different actuation possibilities in the swing hip and stance ankle which could be widely used to produce different walking gaits. Without the need for numerical time-integration, closed-form solutions help finding periodic gaits which could be simply scaled in certain dimensions to modulate the motion online. Thanks to linearity properties, the proposed model can provide a computationally fast platform for model predictive controllers to predict the future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in the very abstract high level template space. The proposed model produces human-like torque and ground reaction force profiles and thus, compared to point-mass models, it is more promising for precise control of humanoid robots. Despite being linear and lacking many other features of human walking like CoM excursion, knee flexion and ground clearance, we show that the proposed model can predict one of the main optimality trends in human walking, i.e. nonlinear speed-frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical analysis still remain for future works.Comment: Journal paper under revie

    Learning Motion Primitives Automata for Autonomous Driving Applications

    Get PDF
    Motion planning methods often rely on libraries of primitives. The selection of primitives is then crucial for assuring feasible solutions and good performance within the motion planner. In the literature, the library is usually designed by either learning from demonstration, relying entirely on data, or by model-based approaches, with the advantage of exploiting the dynamical system’s property, e.g., symmetries. In this work, we propose a method combining data with a dynamical model to optimally select primitives. The library is designed based on primitives with highest occurrences within the data set, while Lie group symmetries from a model are analysed in the available data to allow for structure-exploiting primitives. We illustrate our technique in an autonomous driving application. Primitives are identified based on data from human driving, with the freedom to build libraries of different sizes as a parameter of choice. We also compare the extracted library with a custom selection of primitives regarding the performance of obtained solutions for a street layout based on a real-world scenario

    A dissipativity characterization of velocity turnpikes in optimal control problems for mechanical systems

    Get PDF
    Turnpikes have recently gained significant research interest in optimal control, since they allow for pivotal insights into the structure of solutions to optimal control problems. So far, mainly steady state solutions which serve as optimal operation points, are studied. This is in contrast to time-varying turnpikes, which are in the focus of this paper. More concretely, we analyze symmetry-induced velocity turnpikes, i.e. controlled relative equilibria, called trim primitives, which are optimal operation points regarding the given cost criterion. We characterize velocity turnpikes by means of dissipativity inequalities. Moreover, we study the equivalence between optimal control problems and steady-state problems via the corresponding necessary optimality conditions. An academic example is given for illustration
    • …
    corecore