240,003 research outputs found

    Self-consistency and Symmetry in d-dimensions

    Full text link
    Bethe approximation is shown to violate Bravais lattices translational invariance. A new scheme is then presented which goes over the one-site Weiss model yet preserving initial lattice symmetry. A mapping to a one-dimensional finite closed chain in an external field is obtained. Lattice topology determines the chain size. Using recent results in percolation, lattice connectivity between chains is argued to be (q(d−1)−2)/(d)(q(d-1)-2)/(d) where qq is the coordination number and dd is the space dimension. A new self-consistent mean-field equation of state is derived. Critical temperatures are thus calculated for a large variety of lattices and dimensions. Results are within a few percent of exact estimates. Moreover onset of phase transitions is found to occur in the range (d−1)q>2(d-1)q> 2. For the Ising hypercube it yields the Golden number limit d>(1+5)/(2)d > (1+\sqrt 5)/(2).Comment: 16 pages, latex, Phys. Rev. B (in press

    Baryon-Pion Couplings from Large-N QCD

    Full text link
    We derive a set of consistency conditions for the pion-baryon coupling constants in the large-N limit of QCD. The consistency conditions have a unique solution which are precisely the values for the pion-baryon coupling constants in the Skyrme model. We also prove that non-relativistic SU(2Nf)SU(2N_f) spin-flavor symmetry (where NfN_f is the number of light flavors) is a symmetry of the baryon-pion couplings in the large-N limit of QCD. The symmetry breaking corrections to the pion-baryon couplings vanish to first order in 1/N1/N. Consistency conditions for other couplings, such as the magnetic moments are also derived.Comment: (12 pages, 2 figs, uses harvmac and uufiles), UCSD/PTH 93-1

    Symmetries and itineracy in nonlinear systems with many degrees of freedom

    Get PDF
    Tsuda examines the potential contribution of nonlinear dynamical systems, with many degrees of freedom, to understanding brain function. We offer suggestions concerning symmetry and transients to strengthen the physiological motivation and theoretical consistency of this novel research direction: Symmetry plays a fundamental role, theoretically and in relation to real brains. We also highlight a distinction between chaotic "transience" and "itineracy"

    Soft Theorems For Shift-Symmetric Cosmologies

    Full text link
    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift-symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for Ultra-slow-roll inflation, a particular shift-symmetric, non-attractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.Comment: 4 pages, v2: citation added, v3: citations added and edited in accordance with published versio

    Heterotic T-Duality and the Renormalization Group

    Get PDF
    We consider target space duality transformations for heterotic sigma models and strings away from renormalization group fixed points. By imposing certain consistency requirements between the T-duality symmetry and renormalization group flows, the one loop gauge beta function is uniquely determined, without any diagram calculations. Classical T-duality symmetry is a valid quantum symmetry of the heterotic sigma model, severely constraining its renormalization flows at this one loop order. The issue of heterotic anomalies and their cancelation is addressed from this duality constraining viewpoint.Comment: 17 pages, Late

    The full replica symmetry breaking in the Ising spin glass on random regular graph

    Full text link
    In this paper, we extend the full replica symmetry breaking scheme to the Ising spin glass on a random regular graph. We propose a new martingale approach, that overcomes the limits of the Parisi-M\'ezard cavity method, providing a well-defined formulation of the full replica symmetry breaking problem in random regular graphs. Finally, we define the order parameters of the system and get a set of self-consistency equations for the order parameters and the free energy. We face up the problem only from a technical point of view: the physical meaning of this approach and the quantitative evaluation of the solution of the self-consistency equations will be discussed in next works.Comment: 23 page
    • …
    corecore