112 research outputs found

    Symmetry groupoids and patterns of synchrony in coupled cell networks

    Get PDF
    A coupled cell system is a network of dynamical systems, or “cells,” coupled together. Such systems can be represented schematically by a directed graph whose nodes correspond to cells and whose edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells that preserves all internal dynamics and all couplings. Symmetry can lead to patterns of synchronized cells, rotating waves, multirhythms, and synchronized chaos. We ask whether symmetry is the only mechanism that can create such states in a coupled cell system and show that it is not. The key idea is to replace the symmetry group by the symmetry groupoid, which encodes information about the input sets of cells. (The input set of a cell consists of that cell and all cells connected to that cell.) The admissible vector fields for a given graph—the dynamical systems with the corresponding internal dynamics and couplings—are precisely those that are equivariant under the symmetry groupoid. A pattern of synchrony is “robust” if it arises for all admissible vector fields. The first main result shows that robust patterns of synchrony (invariance of “polydiagonal” subspaces under all admissible vector fields) are equivalent to the combinatorial condition that an equivalence relation on cells is “balanced.” The second main result shows that admissible vector fields restricted to polydiagonal subspaces are themselves admissible vector fields for a new coupled cell network, the “quotient network.” The existence of quotient networks has surprising implications for synchronous dynamics in coupled cell systems

    Symmetry groupoids and admissible vector fields for coupled cell networks

    Get PDF
    The space of admissible vector fields, consistent with the structure of a network of coupled dynamical systems, can be specified in terms of the network's symmetry groupoid. The symmetry groupoid also determines the robust patterns of synchrony in the network – those that arise because of the network topology. In particular, synchronous cells can be identified in a canonical manner to yield a quotient network. Admissible vector fields on the original network induce admissible vector fields on the quotient, and any dynamical state of such an induced vector field can be lifted to the original network, yielding an analogous state in which certain sets of cells are synchronized. In the paper, necessary and sufficient conditions are specified for all admissible vector fields on the quotient to lift in this manner. These conditions are combinatorial in nature, and the proof uses invariant theory for the symmetric group. Also the symmetry groupoid of a quotient is related to that of the original network, and it is shown that there is a close analogy with the usual normalizer symmetry that arises in group-equivariant dynamics

    Amplified Hopf bifurcations in feed-forward networks

    Full text link
    In a previous paper, the authors developed a method for computing normal forms of dynamical systems with a coupled cell network structure. We now apply this theory to one-parameter families of homogeneous feed-forward chains with 2-dimensional cells. Our main result is that Hopf bifurcations in such families generically generate branches of periodic solutions with amplitudes growing like Îť1/2\lambda^{1/2}, Îť1/6\lambda^{1/6}, Îť1/18\lambda^{1/18}, etc. Such amplified Hopf branches were previously found by others in a subclass of feed-forward networks with three cells, first under a normal form assumption and later by explicit computations. We explain here how these bifurcations arise generically in a broader class of feed-forward chains of arbitrary length

    The lattice of balanced equivalence relations of a coupled cell network

    Get PDF
    A coupled cell system is a collection of dynamical systems, or ‘cells’, that are coupled together. The associated coupled cell network is a labelled directed graph that indicates how the cells are coupled, and which cells are equivalent. Golubitsky, Stewart, Pivato and Török have presented a framework for coupled cell systems that permits a classification of robust synchrony in terms of the concept of a ‘balanced equivalence relation’, which depends solely on the network architecture. In their approach the network is assumed to be finite. We prove that the set of all balanced equivalence relations on a network forms a lattice, in the sense of a partially ordered set in which any two elements have a meet and a join. The partial order is defined by refinement. Some aspects of the theory make use of infinite networks, so we work in the category of networks of ‘finite type’, a class that includes all locally finite networks. This context requires some modifications to the standard framework. As partial compensation, the lattice of balanced equivalence relations can then be proved complete. However, the intersection of two balanced equivalence relations need not be balanced, as we show by a simple example, so this lattice is not a sublattice of the lattice of all equivalence relations with its usual operations of meet and join. We discuss the structure of this lattice and computational issues associated with it. In particular, we describe how to determine whether the lattice contains more than the equality relation. As an example, we derive the form of the lattice for a linear chain of identical cells with feedback

    Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation

    Get PDF
    Copyright © 2011 Springer. The final publication is available at www.springerlink.comWe consider the dynamics of small networks of coupled cells. We usually assume asymmetric inputs and no global or local symmetries in the network and consider equivalence of networks in this setting; that is, when two networks with different architectures give rise to the same set of possible dynamics. Focussing on transitive (strongly connected) networks that have only one type of cell (identical cell networks) we address three questions relating the network structure to dynamics. The first question is how the structure of the network may force the existence of invariant subspaces (synchrony subspaces). The second question is how these invariant subspaces can support robust heteroclinic attractors. Finally, we investigate how the dynamics of coupled cell networks with different structures and numbers of cells can be related; in particular we consider the sets of possible “inflations” of a coupled cell network that are obtained by replacing one cell by many of the same type, in such a way that the original network dynamics is still present within a synchrony subspace. We illustrate the results with a number of examples of networks of up to six cells
    • …
    corecore