2,539 research outputs found

    Symmetry Exploitation for Online Machine Covering with Bounded Migration

    Get PDF
    Online models that allow recourse are highly effective in situations where classical models are too pessimistic. One such problem is the online machine covering problem on identical machines. In this setting, jobs arrive one by one and must be assigned to machines with the objective of maximizing the minimum machine load. When a job arrives, we are allowed to reassign some jobs as long as their total size is (at most) proportional to the processing time of the arriving job. The proportionality constant is called the migration factor of the algorithm. By rounding the processing times, which yields useful structural properties for online packing and covering problems, we design first a simple (1.7 + epsilon)-competitive algorithm using a migration factor of O(1/epsilon) which maintains at every arrival a locally optimal solution with respect to the Jump neighborhood. After that, we present as our main contribution a more involved (4/3+epsilon)-competitive algorithm using a migration factor of O~(1/epsilon^3). At every arrival, we run an adaptation of the Largest Processing Time first (LPT) algorithm. Since the new job can cause a complete change of the assignment of smaller jobs in both cases, a low migration factor is achieved by carefully exploiting the highly symmetric structure obtained by the rounding procedure

    Online Bin Covering with Limited Migration

    Get PDF
    Semi-online models where decisions may be revoked in a limited way have been studied extensively in the last years. This is motivated by the fact that the pure online model is often too restrictive to model real-world applications, where some changes might be allowed. A well-studied measure of the amount of decisions that can be revoked is the migration factor beta: When an object o of size s(o) arrives, the decisions for objects of total size at most beta * s(o) may be revoked. Usually beta should be a constant. This means that a small object only leads to small changes. This measure has been successfully investigated for different, classical problems such as bin packing or makespan minimization. The dual of makespan minimization - the Santa Claus or machine covering problem - has also been studied, whereas the dual of bin packing - the bin covering problem - has not been looked at from such a perspective. In this work, we extensively study the bin covering problem with migration in different scenarios. We develop algorithms both for the static case - where only insertions are allowed - and for the dynamic case, where items may also depart. We also develop lower bounds for these scenarios both for amortized migration and for worst-case migration showing that our algorithms have nearly optimal migration factor and asymptotic competitive ratio (up to an arbitrary small epsilon). We therefore resolve the competitiveness of the bin covering problem with migration

    Machine Covering in the Random-Order Model

    Get PDF
    In the Online Machine Covering problem jobs, defined by their sizes, arrive one by one and have to be assigned to mm parallel and identical machines, with the goal of maximizing the load of the least-loaded machine. In this work, we study the Machine Covering problem in the recently popular random-order model. Here no extra resources are present, but instead the adversary is weakened in that it can only decide upon the input set while jobs are revealed uniformly at random. It is particularly relevant to Machine Covering where lower bounds are usually associated to highly structured input sequences. We first analyze Graham's Greedy-strategy in this context and establish that its competitive ratio decreases slightly to Θ(mlog(m))\Theta\left(\frac{m}{\log(m)}\right) which is asymptotically tight. Then, as our main result, we present an improved O~(m4)\tilde{O}(\sqrt[4]{m})-competitive algorithm for the problem. This result is achieved by exploiting the extra information coming from the random order of the jobs, using sampling techniques to devise an improved mechanism to distinguish jobs that are relatively large from small ones. We complement this result with a first lower bound showing that no algorithm can have a competitive ratio of O(log(m)loglog(m))O\left(\frac{\log(m)}{\log\log(m)}\right) in the random-order model. This lower bound is achieved by studying a novel variant of the Secretary problem, which could be of independent interest

    Cardinality Constrained Scheduling in Online Models

    Get PDF
    Makespan minimization on parallel identical machines is a classical and intensively studied problem in scheduling, and a classic example for online algorithm analysis with Graham's famous list scheduling algorithm dating back to the 1960s. In this problem, jobs arrive over a list and upon an arrival, the algorithm needs to assign the job to a machine. The goal is to minimize the makespan, that is, the maximum machine load. In this paper, we consider the variant with an additional cardinality constraint: The algorithm may assign at most kk jobs to each machine where kk is part of the input. While the offline (strongly NP-hard) variant of cardinality constrained scheduling is well understood and an EPTAS exists here, no non-trivial results are known for the online variant. We fill this gap by making a comprehensive study of various different online models. First, we show that there is a constant competitive algorithm for the problem and further, present a lower bound of 22 on the competitive ratio of any online algorithm. Motivated by the lower bound, we consider a semi-online variant where upon arrival of a job of size pp, we are allowed to migrate jobs of total size at most a constant times pp. This constant is called the migration factor of the algorithm. Algorithms with small migration factors are a common approach to bridge the performance of online algorithms and offline algorithms. One can obtain algorithms with a constant migration factor by rounding the size of each incoming job and then applying an ordinal algorithm to the resulting rounded instance. With this in mind, we also consider the framework of ordinal algorithms and characterize the competitive ratio that can be achieved using the aforementioned approaches.Comment: An extended abstract will appear in the proceedings of STACS'2

    Efficient Online Processing for Advanced Analytics

    Get PDF
    With the advent of emerging technologies and the Internet of Things, the importance of online data analytics has become more pronounced. Businesses and companies are adopting approaches that provide responsive analytics to stay competitive in the global marketplace. Online analytics allow data analysts to promptly react to patterns or to gain preliminary insights from early results that aid in research, decision making, and effective strategy planning. The growth of data-velocity in a variety of domains including, high-frequency trading, social networks, infrastructure monitoring, and advertising require adopting online engines that can efficiently process continuous streams of data. This thesis presents foundations, techniques, and systems' design that extend the state-of-the-art in online query processing to efficiently support relational joins with arbitrary join-predicates (beyond traditional equi-joins); and to support other data models (beyond relational) that target machine learning and graph computations. The thesis is divided into two parts: We first present a brief overview of Squall, our open-source online query processing engine that supports SQL-like queries on top of streams. Then, we focus on extending Squall to support efficient theta-join processing. Scalable distributed join processing requires a partitioning policy that evenly distributes the processing load while minimizing the size of maintained state and duplicated messages. Efficient load-balance demands apriori-statistics which are not available in the online setting. We propose a novel operator that continuously adjusts itself to the data dynamics, through adaptive dataflow routing and state repartitioning. It is also resilient to data-skew, maintains high throughput rates, avoids blocking during state repartitioning, and behaves as a black-box dataflow operator with provable performance guarantees. Our evaluation demonstrates that the proposed operator outperforms the state-of-the-art static partitioning schemes in resource utilization, throughput, and execution time up to 7x. In the second part, we present a novel framework that supports the Incremental View Maintenance (IVM) of workloads expressed as linear algebra programs. Linear algebra represents a concrete substrate for advanced analytical tasks including, machine learning, scientific computation, and graph algorithms. Previous works on relational calculus IVM are not applicable to matrix algebra workloads. This is because a single entry change to an input-matrix results in changes all over the intermediate views, rendering IVM useless in comparison to re-evaluation. We present Lago, a unified modular compiler framework that supports the IVM of a broad class of linear algebra programs. Lago automatically derives and optimizes incremental trigger programs of analytical computations, while freeing the user from erroneous manual derivations, low-level implementation details, and performance tuning. We present a novel technique that captures Δ\Delta changes as low-rank matrices. Low-rank matrices are representable in a compressed factored form that enables cheaper computations. Lago automatically propagates the factored representation across program statements to derive an efficient trigger program. Moreover, Lago extends its support to other domains that use different semi-ring configurations, e.g., graph applications. Our evaluation results demonstrate orders of magnitude (10x-1

    Efficient Seismic Imaging of Hexagonally Sampled Seismic Data

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore