3,747 research outputs found

    Correlation of Automorphism Group Size and Topological Properties with Program-size Complexity Evaluations of Graphs and Complex Networks

    Get PDF
    We show that numerical approximations of Kolmogorov complexity (K) applied to graph adjacency matrices capture some group-theoretic and topological properties of graphs and empirical networks ranging from metabolic to social networks. That K and the size of the group of automorphisms of a graph are correlated opens up interesting connections to problems in computational geometry, and thus connects several measures and concepts from complexity science. We show that approximations of K characterise synthetic and natural networks by their generating mechanisms, assigning lower algorithmic randomness to complex network models (Watts-Strogatz and Barabasi-Albert networks) and high Kolmogorov complexity to (random) Erdos-Renyi graphs. We derive these results via two different Kolmogorov complexity approximation methods applied to the adjacency matrices of the graphs and networks. The methods used are the traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a Block Decomposition Method (BDM) measure, based on algorithmic probability theory.Comment: 15 2-column pages, 20 figures. Forthcoming in Physica A: Statistical Mechanics and its Application

    Symmetry-breaking Answer Set Solving

    Full text link
    In the context of Answer Set Programming, this paper investigates symmetry-breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We propose a reduction of disjunctive logic programs to a coloured digraph such that permutational symmetries can be constructed from graph automorphisms. Symmetries are then broken by introducing symmetry-breaking constraints. For this purpose, we formulate a preprocessor that integrates a graph automorphism system. Experiments demonstrate its computational impact.Comment: Proceedings of ICLP'10 Workshop on Answer Set Programming and Other Computing Paradig

    On Symmetry Enhancement in the psu(1,1|2) Sector of N=4 SYM

    Full text link
    Strong evidence indicates that the spectrum of planar anomalous dimensions of N=4 super Yang-Mills theory is given asymptotically by Bethe equations. A curious observation is that the Bethe equations for the psu(1,1|2) subsector lead to very large degeneracies of 2^M multiplets, which apparently do not follow from conventional integrable structures. In this article, we explain such degeneracies by constructing suitable conserved nonlocal generators acting on the spin chain. We propose that they generate a subalgebra of the loop algebra for the su(2) automorphism of psu(1,1|2). Then the degenerate multiplets of size 2^M transform in irreducible tensor products of M two-dimensional evaluation representations of the loop algebra.Comment: 35 pages, v2: references added, sign inconsistency resolved in (5.5,5.6), v3: Section 3.4 on Hamiltonian added, minor improvements, to appear in JHE
    corecore