172 research outputs found

    Adaptive Oblivious Transfer and Generalization

    Get PDF
    International audienceOblivious Transfer (OT) protocols were introduced in the seminal paper of Rabin, and allow a user to retrieve a given number of lines (usually one) in a database, without revealing which ones to the server. The server is ensured that only this given number of lines can be accessed per interaction, and so the others are protected; while the user is ensured that the server does not learn the numbers of the lines required. This primitive has a huge interest in practice, for example in secure multi-party computation, and directly echoes to Symmetrically Private Information Retrieval (SPIR). Recent Oblivious Transfer instantiations secure in the UC framework suf- fer from a drastic fallback. After the first query, there is no improvement on the global scheme complexity and so subsequent queries each have a global complexity of O(|DB|) meaning that there is no gain compared to running completely independent queries. In this paper, we propose a new protocol solving this issue, and allowing to have subsequent queries with a complexity of O(log(|DB|)), and prove the protocol security in the UC framework with adaptive corruptions and reliable erasures. As a second contribution, we show that the techniques we use for Obliv- ious Transfer can be generalized to a new framework we call Oblivi- ous Language-Based Envelope (OLBE). It is of practical interest since it seems more and more unrealistic to consider a database with uncontrolled access in access control scenarii. Our approach generalizes Oblivious Signature-Based Envelope, to handle more expressive credentials and requests from the user. Naturally, OLBE encompasses both OT and OSBE, but it also allows to achieve Oblivious Transfer with fine grain access over each line. For example, a user can access a line if and only if he possesses a certificate granting him access to such line. We show how to generically and efficiently instantiate such primitive, and prove them secure in the Universal Composability framework, with adaptive corruptions assuming reliable erasures. We provide the new UC ideal functionalities when needed, or we show that the existing ones fit in our new framework. The security of such designs allows to preserve both the secrecy of the database values and the user credentials. This symmetry allows to view our new approach as a generalization of the notion of Symmetrically PIR

    The match-making problem

    Get PDF

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Authenticated Garbling and Efficient Maliciously Secure Two-Party Computation

    Get PDF
    We propose a simple and efficient framework for obtaining efficient constant-round protocols for maliciously secure two-party computation. Our framework uses a function-independent preprocessing phase to generate authenticated information for the two parties; this information is then used to construct a single ``authenticated\u27\u27 garbled circuit which is transmitted and evaluated. We also show how to efficiently instantiate the preprocessing phase by designing a highly optimized version of the TinyOT protocol by Nielsen et al. Our overall protocol outperforms existing work in both the single-execution and amortized settings, with or without preprocessing: - In the single-execution setting, our protocol evaluates an AES circuit with malicious security in 37 ms with an online time of just 1 ms. Previous work with the best online time (also 1 ms) requires 124 ms in total; previous work with the best total time requires 62 ms (with 14 ms online time). - If we amortize the computation over 1024 executions, each AES computation requires just 6.7 ms with roughly the same online time as above. The best previous work in the amortized setting has roughly the same total time but does not support function-independent preprocessing. Our work shows that the performance penalty for maliciously secure two-party computation (as compared to semi-honest security) is much smaller than previously believed

    Dynamic Time Warping in Strongly Subquadratic Time: Algorithms for the Low-Distance Regime and Approximate Evaluation

    Get PDF
    Dynamic time warping distance (DTW) is a widely used distance measure between time series. The best known algorithms for computing DTW run in near quadratic time, and conditional lower bounds prohibit the existence of significantly faster algorithms. The lower bounds do not prevent a faster algorithm for the special case in which the DTW is small, however. For an arbitrary metric space ÎŁ\Sigma with distances normalized so that the smallest non-zero distance is one, we present an algorithm which computes dtw⁥(x,y)\operatorname{dtw}(x, y) for two strings xx and yy over ÎŁ\Sigma in time O(n⋅dtw⁥(x,y))O(n \cdot \operatorname{dtw}(x, y)). We also present an approximation algorithm which computes dtw⁥(x,y)\operatorname{dtw}(x, y) within a factor of O(nÏ”)O(n^\epsilon) in time O~(n2−ϔ)\tilde{O}(n^{2 - \epsilon}) for 0<Ï”<10 < \epsilon < 1. The algorithm allows for the strings xx and yy to be taken over an arbitrary well-separated tree metric with logarithmic depth and at most exponential aspect ratio. Extending our techniques further, we also obtain the first approximation algorithm for edit distance to work with characters taken from an arbitrary metric space, providing an nÏ”n^\epsilon-approximation in time O~(n2−ϔ)\tilde{O}(n^{2 - \epsilon}), with high probability. Additionally, we present a simple reduction from computing edit distance to computing DTW. Applying our reduction to a conditional lower bound of Bringmann and K\"unnemann pertaining to edit distance over {0,1}\{0, 1\}, we obtain a conditional lower bound for computing DTW over a three letter alphabet (with distances of zero and one). This improves on a previous result of Abboud, Backurs, and Williams. With a similar approach, we prove a reduction from computing edit distance to computing longest LCS length. This means that one can recover conditional lower bounds for LCS directly from those for edit distance, which was not previously thought to be the case

    On Fairness in Secure Computation

    Get PDF
    Secure computation is a fundamental problem in modern cryptography in which multiple parties join to compute a function of their private inputs without revealing anything beyond the output of the function. A series of very strong results in the 1980's demonstrated that any polynomial-time function can be computed while guaranteeing essentially every desired security property. The only exception is the fairness property, which states that no player should receive their output from the computation unless all players receive their output. While it was shown that fairness can be achieved whenever a majority of players are honest, it was also shown that fairness is impossible to achieve in general when half or more of the players are dishonest. Indeed, it was proven that even boolean XOR cannot be computed fairly by two parties The fairness property is both natural and important, and as such it was one of the first questions addressed in modern cryptography (in the context of signature exchange). One contribution of this thesis is to survey the many approaches that have been used to guarantee different notions of partial fairness. We then revisit the topic of fairness within a modern security framework for secure computation. We demonstrate that, despite the strong impossibility result mentioned above, certain interesting functions can be computed fairly, even when half (or more) of the parties are malicious. We also provide a new notion of partial fairness, demonstrate feasibility of achieving this notion for a large class of functions, and show impossibility for certain functions outside this class. We consider fairness in the presence of rational adversaries, and, finally, we further study the difficulty of achieving fairness by exploring how much external help is necessary for enabling fair secure computation
    • 

    corecore