318 research outputs found

    Semi-Supervised Discriminant Analysis Using Robust Path-Based Similarity

    Get PDF
    Linear Discriminant Analysis (LDA), which works by maximizing the within-class similarity and minimizing the between-class similarity simultaneously, is a popular dimensionality reduction technique in pattern recognition and machine learning. In real-world applications when labeled data are limited, LDA does not work well. Under many situations, however, it is easy to obtain unlabeled data in large quantities. In this paper, we propose a novel dimensionality reduction method, called Semi-Supervised Discriminant Analysis (SSDA), which can utilize both labeled and unlabeled data to perform dimensionality reduction in the semisupervised setting. Our method uses a robust path-based similarity measure to capture the manifold structure of the data and then uses the obtained similarity to maximize the separability between different classes. A kernel extension of the proposed method for nonlinear dimensionality reduction in the semi-supervised setting is also presented. Experiments on face recognition demonstrate the effectiveness of the proposed method. 1

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Discriminant linear processing of time-frequency plane

    Get PDF
    Extending previous works done on considerably smaller data sets, the paper studies linear discriminant analysis of about 30 hours of phoneme-labeled speech data in the time-frequency domain. Analysis is carried both independently in time and frequency and jointly. Data driven spectral basis show similar frequency sensitivity as human hearing. LDA-derived temporal FIR filters are consistent with temporal lateral inhibition. Considerable improvement is obtained using first temporal discriminant

    Discriminant linear processing of time-frequency plane

    Get PDF
    Extending previous works done on considerably smaller data sets, the paper studies linear discriminant analysis of about 30 hours of phoneme-labeled speech data in the time-frequency domain. Analysis is carried both independently in time and frequency and jointly. Data driven spectral basis show similar frequency sensitivity as human hearing. LDA-derived temporal FIR filters are consistent with temporal lateral inhibition. Considerable improvement is obtained using first temporal discriminant

    Ear Recognition Based on Statistical Shape Model.

    Get PDF
    Abstrac

    Automatic Landmarking for Non-cooperative 3D Face Recognition

    Get PDF
    This thesis describes a new framework for 3D surface landmarking and evaluates its performance for feature localisation on human faces. This framework has two main parts that can be designed and optimised independently. The first one is a keypoint detection system that returns positions of interest for a given mesh surface by using a learnt dictionary of local shapes. The second one is a labelling system, using model fitting approaches that establish a one-to-one correspondence between the set of unlabelled input points and a learnt representation of the class of object to detect. Our keypoint detection system returns local maxima over score maps that are generated from an arbitrarily large set of local shape descriptors. The distributions of these descriptors (scalars or histograms) are learnt for known landmark positions on a training dataset in order to generate a model. The similarity between the input descriptor value for a given vertex and a model shape is used as a descriptor-related score. Our labelling system can make use of both hypergraph matching techniques and rigid registration techniques to reduce the ambiguity attached to unlabelled input keypoints for which a list of model landmark candidates have been seeded. The soft matching techniques use multi-attributed hyperedges to reduce ambiguity, while the registration techniques use scale-adapted rigid transformation computed from 3 or more points in order to obtain one-to-one correspondences. Our final system achieves better or comparable (depending on the metric) results than the state-of-the-art while being more generic. It does not require pre-processing such as cropping, spike removal and hole filling and is more robust to occlusion of salient local regions, such as those near the nose tip and inner eye corners. It is also fully pose invariant and can be used with kinds of objects other than faces, provided that labelled training data is available
    • ā€¦
    corecore