5,927 research outputs found

    The 4-particle hydrogen-antihydrogen system revisited: twofold Hamiltonian symmetry and natural atom antihydrogen

    Full text link
    Modern ab initio treatments of H-Hbar systems are inconsistent with the logic behind algebraic Hamiltonians H(+-)=H(0)+/-deltaH for charge-symmetrical and charge-asymmetrical 4 unit charge systems like H(2) and HHbar. Since these 2 Hamiltonians are mutually exclusive, only the attractive one can apply for stable natural molecular H(2). A wrong choice leads to problems with antiatom Hbar. In line with earlier results on band and line spectra, we now prove that HL chose the wrong Hamiltonian for H(2). Their theory explains the stability of attractive system H(2) with a repulsive Hamiltonian instead of with the attractive one, representative for charge-asymmetrical system HHbar. A new second order symmetry effect is detected. Repulsive HL Hamiltonian H(+) applies at long range but at the critical distance, attractive charge-inverted Hamiltonian H(-)takes over and leads to bond H(2) but in reality, HHbar, for which we give an analytical proof. Another wrong asymptote choice in the past also applies for atomic antihydrogen Hbar, which has hidden the Mexican hat potential for natural hydrogen. This generic solution removes most problems, physicists and chemists experience with atomic Hbar and molecular HHbar, including the problem with antimatter in the Universe.Comment: at the instituional UGent archive, 37 pag, 10 fig, tabb, version as submitted, abstract shortene

    Adaptation of back projection tomography to seismic travel time problems

    Get PDF
    A back projection method of reconstruction is adapted to invert seismic travel time data for velocity structure. Adaptations are made so that the inhomogeneous and anisotropic ray sets and the three-dimensional geometries commonly dealt with in seismic experiments can be handled with greater success. Jacobi iteration, deconvolution, and ray weighting work well in augmenting the basic back projection method to produce a well-focused image. These methods succeed by amounts that depend on the quality of the ray coverage. Also, the ability to reconstruct an accurate image when the data include moderate amounts of noise is shown to be good. Comparison of inversions produced with back projection tomography and with damped least squares indicate that the two methods are comparable in their ability to reconstruct an image of the actual structure. The back projection approach, however, is much more computer efficient. In practice, this allows for the construction of more detailed inversions

    Gravitational S-matrix from CFT dispersion relations

    Full text link
    We analyse the double-discontinuities of the four-point correlator of the stress-tensor multiplet in N=4 SYM at large t' Hooft coupling and at order 1/N41/N^4, as a way to access one-loop effects in the dual supergravity theory. From these singularities we extract CFT-data by using two inversion procedures: one based on a recently proposed Froissart-Gribov inversion integral, and the other based on large spin perturbation theory. Both procedures lead to the same results and are shown to be equivalent more generally. Our computation parallels the standard S-matrix reconstruction via dispersion relations. In a suitable limit, the result of the conformal field theory calculation is compared with the one-loop graviton scattering amplitude in ten-dimensional IIB supergravity in flat space, finding perfect agreement.Comment: 39 pages, pretty figure

    A Processor Core Model for Quantum Computing

    Get PDF
    We describe an architecture based on a processing 'core' where multiple qubits interact perpetually, and a separate 'store' where qubits exist in isolation. Computation consists of single qubit operations, swaps between the store and the core, and free evolution of the core. This enables computation using physical systems where the entangling interactions are 'always on'. Alternatively, for switchable systems our model constitutes a prescription for optimizing many-qubit gates. We discuss implementations of the quantum Fourier transform, Hamiltonian simulation, and quantum error correction.Comment: 5 pages, 2 figures; improved some arguments as suggested by a refere

    Integrated chaos generators

    Get PDF
    This paper surveys the different design issues, from mathematical model to silicon, involved on the design of integrated circuits for the generation of chaotic behavior.Comisión Interministerial de Ciencia y Tecnología 1FD97-1611(TIC)European Commission ESPRIT 3110

    3-D Seismic Methods for Shallow Imaging Beneath Pavement

    Get PDF
    The research presented in this dissertation focuses on survey design and acquisition of near-surface 3D seismic reflection and surface wave data on pavement. Increased efficiency for mapping simple subsurface interfaces through a combined use of modified land survey designs and a hydraulically driven acquisition device are demonstrated. Using these techniques subsurface reflectors can be quickly and efficiently imaged in the course of an afternoon. The use of surface waves to analyze the upper several tens of meters of the subsurface has become an important technique for near-surface investigations. A new method for acquiring and visualizing surface wave information in three-dimensions is demonstrated. As will be shown, a volume of shear wave velocities can be created by acquiring surface waves along multiple, coincident lines. Using a series of computer algorithms the data can then be graphed in 2D or 3D space providing a method of visualization not previously available
    corecore