101,469 research outputs found

    Maximal slicings in spherical symmetry: local existence and construction

    Full text link
    We show that any spherically symmetric spacetime locally admits a maximal spacelike slicing and we give a procedure allowing its construction. The construction procedure that we have designed is based on purely geometrical arguments and, in practice, leads to solve a decoupled system of first order quasi-linear partial differential equations. We have explicitly built up maximal foliations in Minkowski and Friedmann spacetimes. Our approach admits further generalizations and efficient computational implementation. As by product, we suggest some applications of our work in the task of calibrating Numerical Relativity complex codes, usually written in Cartesian coordinates.Comment: 25 pages, 6 figure

    Decomposition Methods for Large Scale LP Decoding

    Full text link
    When binary linear error-correcting codes are used over symmetric channels, a relaxed version of the maximum likelihood decoding problem can be stated as a linear program (LP). This LP decoder can be used to decode error-correcting codes at bit-error-rates comparable to state-of-the-art belief propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP decoding when implemented with standard LP solvers does not easily scale to the block lengths of modern error correcting codes. In this paper we draw on decomposition methods from optimization theory, specifically the Alternating Directions Method of Multipliers (ADMM), to develop efficient distributed algorithms for LP decoding. The key enabling technical result is a "two-slice" characterization of the geometry of the parity polytope, which is the convex hull of all codewords of a single parity check code. This new characterization simplifies the representation of points in the polytope. Using this simplification, we develop an efficient algorithm for Euclidean norm projection onto the parity polytope. This projection is required by ADMM and allows us to use LP decoding, with all its theoretical guarantees, to decode large-scale error correcting codes efficiently. We present numerical results for LDPC codes of lengths more than 1000. The waterfall region of LP decoding is seen to initiate at a slightly higher signal-to-noise ratio than for sum-product BP, however an error floor is not observed for LP decoding, which is not the case for BP. Our implementation of LP decoding using ADMM executes as fast as our baseline sum-product BP decoder, is fully parallelizable, and can be seen to implement a type of message-passing with a particularly simple schedule.Comment: 35 pages, 11 figures. An early version of this work appeared at the 49th Annual Allerton Conference, September 2011. This version to appear in IEEE Transactions on Information Theor

    Empirical and Strong Coordination via Soft Covering with Polar Codes

    Full text link
    We design polar codes for empirical coordination and strong coordination in two-node networks. Our constructions hinge on the fact that polar codes enable explicit low-complexity schemes for soft covering. We leverage this property to propose explicit and low-complexity coding schemes that achieve the capacity regions of both empirical coordination and strong coordination for sequences of actions taking value in an alphabet of prime cardinality. Our results improve previously known polar coding schemes, which (i) were restricted to uniform distributions and to actions obtained via binary symmetric channels for strong coordination, (ii) required a non-negligible amount of common randomness for empirical coordination, and (iii) assumed that the simulation of discrete memoryless channels could be perfectly implemented. As a by-product of our results, we obtain a polar coding scheme that achieves channel resolvability for an arbitrary discrete memoryless channel whose input alphabet has prime cardinality.Comment: 14 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor

    K-user Interference Channels: Achievable Secrecy Rate and Degrees of Freedom

    Full text link
    In this work, we consider achievable secrecy rates for symmetric KK-user (K≥3K \ge 3) interference channels with confidential messages. We find that nested lattice codes and layered coding are useful in providing secrecy for these channels. Achievable secrecy rates are derived for very strong interference. In addition, we derive the secure degrees of freedom for a range of channel parameters. As a by-product of our approach, we also demonstrate that nested lattice codes are useful for K-user symmetric interference channels without secrecy constraints in that they yield higher degrees of freedom than previous results.Comment: 5 pages. To appear at IEEE ITW 2009, Volos, June 200
    • …
    corecore