1,997 research outputs found

    An SDP Approach For Solving Quadratic Fractional Programming Problems

    Full text link
    This paper considers a fractional programming problem (P) which minimizes a ratio of quadratic functions subject to a two-sided quadratic constraint. As is well-known, the fractional objective function can be replaced by a parametric family of quadratic functions, which makes (P) highly related to, but more difficult than a single quadratic programming problem subject to a similar constraint set. The task is to find the optimal parameter λ∗\lambda^* and then look for the optimal solution if λ∗\lambda^* is attained. Contrasted with the classical Dinkelbach method that iterates over the parameter, we propose a suitable constraint qualification under which a new version of the S-lemma with an equality can be proved so as to compute λ∗\lambda^* directly via an exact SDP relaxation. When the constraint set of (P) is degenerated to become an one-sided inequality, the same SDP approach can be applied to solve (P) {\it without any condition}. We observe that the difference between a two-sided problem and an one-sided problem lies in the fact that the S-lemma with an equality does not have a natural Slater point to hold, which makes the former essentially more difficult than the latter. This work does not, either, assume the existence of a positive-definite linear combination of the quadratic terms (also known as the dual Slater condition, or a positive-definite matrix pencil), our result thus provides a novel extension to the so-called "hard case" of the generalized trust region subproblem subject to the upper and the lower level set of a quadratic function.Comment: 26 page

    A Modified Levenberg-Marquardt Method for the Bidirectional Relay Channel

    Full text link
    This paper presents an optimization approach for a system consisting of multiple bidirectional links over a two-way amplify-and-forward relay. It is desired to improve the fairness of the system. All user pairs exchange information over one relay station with multiple antennas. Due to the joint transmission to all users, the users are subject to mutual interference. A mitigation of the interference can be achieved by max-min fair precoding optimization where the relay is subject to a sum power constraint. The resulting optimization problem is non-convex. This paper proposes a novel iterative and low complexity approach based on a modified Levenberg-Marquardt method to find near optimal solutions. The presented method finds solutions close to the standard convex-solver based relaxation approach.Comment: submitted to IEEE Transactions on Vehicular Technology We corrected small mistakes in the proof of Lemma 2 and Proposition

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    A Practical Guide to Robust Optimization

    Get PDF
    Robust optimization is a young and active research field that has been mainly developed in the last 15 years. Robust optimization is very useful for practice, since it is tailored to the information at hand, and it leads to computationally tractable formulations. It is therefore remarkable that real-life applications of robust optimization are still lagging behind; there is much more potential for real-life applications than has been exploited hitherto. The aim of this paper is to help practitioners to understand robust optimization and to successfully apply it in practice. We provide a brief introduction to robust optimization, and also describe important do's and don'ts for using it in practice. We use many small examples to illustrate our discussions

    Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone

    Get PDF
    We investigate the completely positive semidefinite cone CS+n\mathcal{CS}_+^n, a new matrix cone consisting of all n×nn\times n matrices that admit a Gram representation by positive semidefinite matrices (of any size). In particular we study relationships between this cone and the completely positive and doubly nonnegative cones, and between its dual cone and trace positive non-commutative polynomials. We use this new cone to model quantum analogues of the classical independence and chromatic graph parameters α(G)\alpha(G) and χ(G)\chi(G), which are roughly obtained by allowing variables to be positive semidefinite matrices instead of 0/10/1 scalars in the programs defining the classical parameters. We can formulate these quantum parameters as conic linear programs over the cone CS+n\mathcal{CS}_+^n. Using this conic approach we can recover the bounds in terms of the theta number and define further approximations by exploiting the link to trace positive polynomials.Comment: Fixed some typo

    Applications of quark-hadron duality in F2 structure function

    Full text link
    Inclusive electron-proton and electron-deuteron inelastic cross sections have been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken x, up to 0.92, and four-momentum transfer squared Q2 up to 7.5 GeV2 in the experiment E00-116. These measurements are used to extend to larger x and Q2 precision, quantitative, studies of the phenomenon of quark-hadron duality. Our analysis confirms, both globally and locally, the apparent violation of quark-hadron duality previously observed at a Q2 of 3.5 GeV2 when resonance data are compared to structure function data created from CTEQ6M and MRST2004 parton distribution functions (PDFs). More importantly, our new data show that this discrepancy saturates by Q2 ~ 4 Gev2, becoming Q2 independent. This suggests only small violations of Q2 evolution by contributions from the higher-twist terms in the resonance region which is confirmed by our comparisons to ALEKHIN and ALLM97.We conclude that the unconstrained strength of the CTEQ6M and MRST2004 PDFs at large x is the major source of the disagreement between data and these parameterizations in the kinematic regime we study and that, in view of quark-hadron duality, properly averaged resonance region data could be used in global QCD fits to reduce PDF uncertainties at large x.Comment: 35 page
    • …
    corecore