1,421 research outputs found

    Symmetric Decentralized Interference Channels with Noisy Feedback

    Get PDF
    International audienceIn this paper, all the rate-pairs that are achievable at a Nash equilibrium (NE) in the two-user linear deterministic symmetric decentralized interference channel (LD-S-DIC) with noisy feedback are identified. More specifically, the Nash region (NR) of the LD-S-DIC with noisy feedback is fully characterized. The relevance of these rate-pairs is that once they are achieved by using NE transmit-receive configurations, none of the transmitter-receiver pairs can increase their individual rates by unilaterally changing their configurations. More importantly, it is shown that the NR of the LD-S-DIC with noisy feedback is larger than the NR of the LD-S-DIC without feedback only in certain cases. When interference is stronger than the desired signals, a larger NR is observed only if the signal to noise ratios (SNRs) of the feedback links are higher than the SNRs of the direct links. Conversely, when desired signals are stronger than interference, a larger NR is observed only if the SNRs of the feedback links are higher than both the signal to interference ratios (SIRs) and the interference to noise ratios (INRs) of the direct links. Previous results, namely the NE region of the two-user LD-S-DIC without feedback and with perfect output feedback are obtained as special cases of the results presented in this contribution

    Noisy Channel-Output Feedback Capacity of the Linear Deterministic Interference Channel

    Get PDF
    In this paper, the capacity region of the two-user linear deterministic (LD) interference channel with noisy output feedback (IC-NOF) is fully characterized. This result allows the identification of several asymmetric scenarios in which imple- menting channel-output feedback in only one of the transmitter- receiver pairs is as beneficial as implementing it in both links, in terms of achievable individual rate and sum-rate improvements w.r.t. the case without feedback. In other scenarios, the use of channel-output feedback in any of the transmitter-receiver pairs benefits only one of the two pairs in terms of achievable individual rate improvements or simply, it turns out to be useless, i.e., the capacity regions with and without feedback turn out to be identical even in the full absence of noise in the feedback links.Comment: 5 pages, 9 figures, see proofs in V. Quintero, S. M. Perlaza, and J.-M. Gorce, "Noisy channel-output feedback capacity of the linear deterministic interference channel," INRIA, Tech. Rep. 456, Jan. 2015. This was submitted and accepted in IEEE ITW 201

    Perfect Output Feedback in the Two-User Decentralized Interference Channel

    Get PDF
    In this paper, the η\eta-Nash equilibrium (η\eta-NE) region of the two-user Gaussian interference channel (IC) with perfect output feedback is approximated to within 11 bit/s/Hz and η\eta arbitrarily close to 11 bit/s/Hz. The relevance of the η\eta-NE region is that it provides the set of rate-pairs that are achievable and stable in the IC when both transmitter-receiver pairs autonomously tune their own transmit-receive configurations seeking an η\eta-optimal individual transmission rate. Therefore, any rate tuple outside the η\eta-NE region is not stable as there always exists one link able to increase by at least η\eta bits/s/Hz its own transmission rate by updating its own transmit-receive configuration. The main insights that arise from this work are: (i)(i) The η\eta-NE region achieved with feedback is larger than or equal to the η\eta-NE region without feedback. More importantly, for each rate pair achievable at an η\eta-NE without feedback, there exists at least one rate pair achievable at an η\eta-NE with feedback that is weakly Pareto superior. (ii)(ii) There always exists an η\eta-NE transmit-receive configuration that achieves a rate pair that is at most 11 bit/s/Hz per user away from the outer bound of the capacity region.Comment: Revised version (Aug. 2015

    Nash Region of the Linear Deterministic Interference Channel with Noisy Output Feedback

    Get PDF
    In this paper, the η\eta-Nash equilibrium (η\eta-NE) region of the two-user linear deterministic interference channel (IC) with noisy channel-output feedback is characterized for all η>0\eta > 0. The η\eta-NE region, a subset of the capacity region, contains the set of all achievable information rate pairs that are stable in the sense of an η\eta-NE. More specifically, given an η\eta-NE coding scheme, there does not exist an alternative coding scheme for either transmitter-receiver pair that increases the individual rate by more than η\eta bits per channel use. Existing results such as the η\eta-NE region of the linear deterministic IC without feedback and with perfect output feedback are obtained as particular cases of the result presented in this paper.Comment: 5 pages, 2 figures, to appear in ISIT 201

    Control-theoretic Approach to Communication with Feedback: Fundamental Limits and Code Design

    Full text link
    Feedback communication is studied from a control-theoretic perspective, mapping the communication problem to a control problem in which the control signal is received through the same noisy channel as in the communication problem, and the (nonlinear and time-varying) dynamics of the system determine a subclass of encoders available at the transmitter. The MMSE capacity is defined to be the supremum exponential decay rate of the mean square decoding error. This is upper bounded by the information-theoretic feedback capacity, which is the supremum of the achievable rates. A sufficient condition is provided under which the upper bound holds with equality. For the special class of stationary Gaussian channels, a simple application of Bode's integral formula shows that the feedback capacity, recently characterized by Kim, is equal to the maximum instability that can be tolerated by the controller under a given power constraint. Finally, the control mapping is generalized to the N-sender AWGN multiple access channel. It is shown that Kramer's code for this channel, which is known to be sum rate optimal in the class of generalized linear feedback codes, can be obtained by solving a linear quadratic Gaussian control problem.Comment: Submitted to IEEE Transactions on Automatic Contro

    Stabilization of Linear Systems Over Gaussian Networks

    Full text link
    The problem of remotely stabilizing a noisy linear time invariant plant over a Gaussian relay network is addressed. The network is comprised of a sensor node, a group of relay nodes and a remote controller. The sensor and the relay nodes operate subject to an average transmit power constraint and they can cooperate to communicate the observations of the plant's state to the remote controller. The communication links between all nodes are modeled as Gaussian channels. Necessary as well as sufficient conditions for mean-square stabilization over various network topologies are derived. The sufficient conditions are in general obtained using delay-free linear policies and the necessary conditions are obtained using information theoretic tools. Different settings where linear policies are optimal, asymptotically optimal (in certain parameters of the system) and suboptimal have been identified. For the case with noisy multi-dimensional sources controlled over scalar channels, it is shown that linear time varying policies lead to minimum capacity requirements, meeting the fundamental lower bound. For the case with noiseless sources and parallel channels, non-linear policies which meet the lower bound have been identified
    corecore