742 research outputs found

    On the smallest snarks with oddness 4 and connectivity 2

    Get PDF
    A snark is a bridgeless cubic graph which is not 3-edge-colourable. The oddness of a bridgeless cubic graph is the minimum number of odd components in any 2-factor of the graph. Lukot'ka, M\'acajov\'a, Maz\'ak and \v{S}koviera showed in [Electron. J. Combin. 22 (2015)] that the smallest snark with oddness 4 has 28 vertices and remarked that there are exactly two such graphs of that order. However, this remark is incorrect as -- using an exhaustive computer search -- we show that there are in fact three snarks with oddness 4 on 28 vertices. In this note we present the missing snark and also determine all snarks with oddness 4 up to 34 vertices.Comment: 5 page

    Geometric aspects of 2-walk-regular graphs

    Full text link
    A tt-walk-regular graph is a graph for which the number of walks of given length between two vertices depends only on the distance between these two vertices, as long as this distance is at most tt. Such graphs generalize distance-regular graphs and tt-arc-transitive graphs. In this paper, we will focus on 1- and in particular 2-walk-regular graphs, and study analogues of certain results that are important for distance regular graphs. We will generalize Delsarte's clique bound to 1-walk-regular graphs, Godsil's multiplicity bound and Terwilliger's analysis of the local structure to 2-walk-regular graphs. We will show that 2-walk-regular graphs have a much richer combinatorial structure than 1-walk-regular graphs, for example by proving that there are finitely many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given diameter (a geometric graph is the point graph of a special partial linear space); a result that is analogous to a result on distance-regular graphs. Such a result does not hold for 1-walk-regular graphs, as our construction methods will show

    Independent sets and cuts in large-girth regular graphs

    Get PDF
    We present a local algorithm producing an independent set of expected size 0.44533n0.44533n on large-girth 3-regular graphs and 0.40407n0.40407n on large-girth 4-regular graphs. We also construct a cut (or bisection or bipartite subgraph) with 1.34105n1.34105n edges on large-girth 3-regular graphs. These decrease the gaps between the best known upper and lower bounds from 0.01780.0178 to 0.010.01, from 0.02420.0242 to 0.01230.0123 and from 0.07240.0724 to 0.06160.0616, respectively. We are using local algorithms, therefore, the method also provides upper bounds for the fractional coloring numbers of 1/0.44533≈2.245541 / 0.44533 \approx 2.24554 and 1/0.40407≈2.47481 / 0.40407 \approx 2.4748 and fractional edge coloring number 1.5/1.34105≈1.11851.5 / 1.34105 \approx 1.1185. Our algorithms are applications of the technique introduced by Hoppen and Wormald
    • …
    corecore