356 research outputs found

    Multidimensional Wavelets and Computer Vision

    Get PDF
    This report deals with the construction and the mathematical analysis of multidimensional nonseparable wavelets and their efficient application in computer vision. In the first part, the fundamental principles and ideas of multidimensional wavelet filter design such as the question for the existence of good scaling matrices and sensible design criteria are presented and extended in various directions. Afterwards, the analytical properties of these wavelets are investigated in some detail. It will turn out that they are especially well-suited to represent (discretized) data as well as large classes of operators in a sparse form - a property that directly yields efficient numerical algorithms. The final part of this work is dedicated to the application of the developed methods to the typical computer vision problems of nonlinear image regularization and the computation of optical flow in image sequences. It is demonstrated how the wavelet framework leads to stable and reliable results for these problems of generally ill-posed nature. Furthermore, all the algorithms are of order O(n) leading to fast processing

    Jacket Matrix Based Recursive Fourier Analysis and Its Applications

    Get PDF

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Local Geometric Transformations in Image Analysis

    Get PDF
    The characterization of images by geometric features facilitates the precise analysis of the structures found in biological micrographs such as cells, proteins, or tissues. In this thesis, we study image representations that are adapted to local geometric transformations such as rotation, translation, and scaling, with a special emphasis on wavelet representations. In the first part of the thesis, our main interest is in the analysis of directional patterns and the estimation of their location and orientation. We explore steerable representations that correspond to the notion of rotation. Contrarily to classical pattern matching techniques, they have no need for an a priori discretization of the angle and for matching the filter to the image at each discretized direction. Instead, it is sufficient to apply the filtering only once. Then, the rotated filter for any arbitrary angle can be determined by a systematic and linear transformation of the initial filter. We derive the Cramér-Rao bounds for steerable filters. They allow us to select the best harmonics for the design of steerable detectors and to identify their optimal radial profile. We propose several ways to construct optimal representations and to build powerful and effective detector schemes; in particular, junctions of coinciding branches with local orientations. The basic idea of local transformability and the general principles that we utilize to design steerable wavelets can be applied to other geometric transformations. Accordingly, in the second part, we extend our framework to other transformation groups, with a particular interest in scaling. To construct representations in tune with a notion of local scale, we identify the possible solutions for scalable functions and give specific criteria for their applicability to wavelet schemes. Finally, we propose discrete wavelet frames that approximate a continuous wavelet transform. Based on these results, we present a novel wavelet-based image-analysis software that provides a fast and automatic detection of circular patterns, combined with a precise estimation of their size

    Solutions to non-stationary problems in wavelet space.

    Get PDF

    VI Workshop on Computational Data Analysis and Numerical Methods: Book of Abstracts

    Get PDF
    The VI Workshop on Computational Data Analysis and Numerical Methods (WCDANM) is going to be held on June 27-29, 2019, in the Department of Mathematics of the University of Beira Interior (UBI), CovilhĂŁ, Portugal and it is a unique opportunity to disseminate scientific research related to the areas of Mathematics in general, with particular relevance to the areas of Computational Data Analysis and Numerical Methods in theoretical and/or practical field, using new techniques, giving especial emphasis to applications in Medicine, Biology, Biotechnology, Engineering, Industry, Environmental Sciences, Finance, Insurance, Management and Administration. The meeting will provide a forum for discussion and debate of ideas with interest to the scientific community in general. With this meeting new scientific collaborations among colleagues, namely new collaborations in Masters and PhD projects are expected. The event is open to the entire scientific community (with or without communication/poster)

    Local behavior of distributions and applications

    Get PDF
    This dissertation studies local and asymptotic properties of distributions (generalized functions) in connection to several problems in harmonic analysis, approximation theory, classical real and complex function theory, tauberian theory, summability of divergent series and integrals, and number theory. In Chapter 2 we give two new proofs of the Prime Number Theory based on ideas from asymptotic analysis on spaces of distributions. Several inverse problems in Fourier analysis and summability theory are studied in detail. Chapter 3 provides a complete characterization of point values of tempered distributions and functions in terms of a generalized pointwise Fourier inversion formula. The relation of the Fourier inversion formula with several summability procedures for divergent series and integrals is established. This work also provides formulas for jump singularities, that is, detection of edges from spectral data, which can be used as effective numerical detectors. Chapters 5 and 6 introduce new summability methods for the determination of jump discontinuities. Estimations on orders of summability are given in Chapter 8. Chapters 4 and 9 give a tauberian theory for distributional point values; this theory recovers important classical tauberians of Hardy and Littlewood, among others, for Dirichlet series. We make a complete wavelet analysis of asymptotic properties of distributions in Chapter 11. This study connects the boundary asymptotic behavior of the wavelet transform with asymptotics of tempered distributions. It is shown that our tauberian theorems become full characterizations. Chapter 10 makes a comprehensive study of asymptotic properties of distributions. Open problems in the area are solved in Chapter 10 and new tools are developed. We obtain a complete structural description of quasiasymptotics in one variable. We introduce the phi-transform for the local analysis of functions, measures, and distributions. In Chapter 7 the transform is used to study distributionally regulated functions (introduced here). Chapter 12 presents a characterization of measures in terms of the boundary behavior of this transform. We characterize the support of tempered distributions in Chapter 13 by various summability means of the Fourier transform
    • …
    corecore