3,304 research outputs found

    Self-Dual codes from (−1,1)(-1,1)-matrices of skew symmetric type

    Get PDF
    Previously, self-dual codes have been constructed from weighing matrices, and in particular from conference matrices (skew and symmetric). In this paper, codes constructed from matrices of skew symmetric type whose determinants reach the Ehlich-Wojtas' bound are presented. A necessary and sufficient condition for these codes to be self-dual is given, and examples are provided for lengths up to 52

    Supplementary difference sets with symmetry for Hadamard matrices

    Full text link
    First we give an overview of the known supplementary difference sets (SDS) (A_i), i=1..4, with parameters (n;k_i;d), where k_i=|A_i| and each A_i is either symmetric or skew and k_1 + ... + k_4 = n + d. Five new Williamson matrices over the elementary abelian groups of order 25, 27 and 49 are constructed. New examples of skew Hadamard matrices of order 4n for n=47,61,127 are presented. The last of these is obtained from a (127,57,76)-difference family that we have constructed. An old non-published example of G-matrices of order 37 is also included.Comment: 16 pages, 2 tables. A few minor changes are made. The paper will appear in Operators and Matrice

    Cohomology-Developed Matrices -- constructing families of weighing matrices and automorphism actions

    Full text link
    The aim of this work is to construct families of weighing matrices via their automorphism group action. This action is determined from the 0,1,20,1,2-cohomology groups of the underlying abstract group. As a consequence, some old and new families of weighing matrices are constructed. These include the Paley Conference, the Projective-Space, the Grassmannian, and the Flag-Variety weighing matrices. We develop a general theory relying on low dimensional group-cohomology for constructing automorphism group actions, and in turn obtain structured matrices that we call \emph{Cohomology-Developed matrices}. This "Cohomology-Development" generalizes the Cocyclic and Group Developments. The Algebraic structure of modules of Cohomology-Developed matrices is discussed, and an orthogonality result is deduced. We also use this algebraic structure to define the notion of \emph{Quasiproducts}, which is a generalization of the Kronecker-product

    Free nilpotent and HH-type Lie algebras. Combinatorial and orthogonal designs

    Full text link
    The aim of our paper is to construct pseudo HH-type algebras from the covering free nilpotent two-step Lie algebra as the quotient algebra by an ideal. We propose an explicit algorithm of construction of such an ideal by making use of a non-degenerate scalar product. Moreover, as a bypass result, we recover the existence of a rational structure on pseudo HH-type algebras, which implies the existence of lattices on the corresponding pseudo HH-type Lie groups. Our approach substantially uses combinatorics and reveals the interplay of pseudo HH-type algebras with combinatorial and orthogonal designs. One of the key tools is the family of Hurwitz-Radon orthogonal matrices
    • …
    corecore