25 research outputs found

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    The Algebra of Open and Interconnected Systems

    Full text link
    Herein we develop category-theoretic tools for understanding network-style diagrammatic languages. The archetypal network-style diagrammatic language is that of electric circuits; other examples include signal flow graphs, Markov processes, automata, Petri nets, chemical reaction networks, and so on. The key feature is that the language is comprised of a number of components with multiple (input/output) terminals, each possibly labelled with some type, that may then be connected together along these terminals to form a larger network. The components form hyperedges between labelled vertices, and so a diagram in this language forms a hypergraph. We formalise the compositional structure by introducing the notion of a hypergraph category. Network-style diagrammatic languages and their semantics thus form hypergraph categories, and semantic interpretation gives a hypergraph functor. The first part of this thesis develops the theory of hypergraph categories. In particular, we introduce the tools of decorated cospans and corelations. Decorated cospans allow straightforward construction of hypergraph categories from diagrammatic languages: the inputs, outputs, and their composition are modelled by the cospans, while the 'decorations' specify the components themselves. Not all hypergraph categories can be constructed, however, through decorated cospans. Decorated corelations are a more powerful version that permits construction of all hypergraph categories and hypergraph functors. These are often useful for constructing the semantic categories of diagrammatic languages and functors from diagrams to the semantics. To illustrate these principles, the second part of this thesis details applications to linear time-invariant dynamical systems and passive linear networks.Comment: 230 pages. University of Oxford DPhil Thesi

    Nominal Models of Linear Logic

    Get PDF
    PhD thesisMore than 30 years after the discovery of linear logic, a simple fully-complete model has still not been established. As of today, models of logics with type variables rely on di-natural transformations, with the intuition that a proof should behave uniformly at variable types. Consequently, the interpretations of the proofs are not concrete. The main goal of this thesis was to shift from a 2-categorical setting to a first-order category. We model each literal by a pool of resources of a certain type, that we encode thanks to sorted names. Based on this, we revisit a range of categorical constructions, leading to nominal relational models of linear logic. As these fail to prove fully-complete, we revisit the fully-complete game-model of linear logic established by Melliès. We give a nominal account of concurrent game semantics, with an emphasis on names as resources. Based on them, we present fully complete models of multiplicative additive tensorial, and then linear logics. This model extends the previous result by adding atomic variables, although names do not play a crucial role in this result. On the other hand, it provides a nominal structure that allows for a nominal relationship between the Böhm trees of the linear lambda-terms and the plays of the strategies. However, this full-completeness result for linear logic rests on a quotient. Therefore, in the final chapter, we revisit the concurrent operators model which was first developed by Abramsky and Melliès. In our new model, the axiomatic structure is encoded through nominal techniques and strengthened in such a way that full completeness still holds for MLL. Our model does not depend on any 2-categorical argument or quotient. Furthermore, we show that once enriched with a hypercoherent structure, we get a static fully complete model of MALL
    corecore