113 research outputs found

    Low-Complexity Algorithms for Channel Estimation in Optimised Pilot-Assisted Wireless OFDM Systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has recently become a dominant transmission technology considered for the next generation fixed and mobile broadband wireless communication systems. OFDM has an advantage of lessening the severe effects of the frequency-selective (multipath) fading due to the band splitting into relatively flat fading subchannels, and allows for low-complexity transceiver implementation based on the fast Fourier transform algorithms. Combining OFDM modulation with multilevel frequency-domain symbol mapping (e.g., QAM) and spatial multiplexing (SM) over the multiple-input multiple-output (MIMO) channels, can theoretically achieve near Shannon capacity of the communication link. However, the high-rate and spectrumefficient system implementation requires coherent detection at the receiving end that is possible only when accurate channel state information (CSI) is available. Since in practice, the response of the wireless channel is unknown and is subject to random variation with time, the receiver typically employs a channel estimator for CSI acquisition. The channel response information retrieved by the estimator is then used by the data detector and can also be fed back to the transmitter by means of in-band or out-of-band signalling, so the latter could adapt power loading, modulation and coding parameters according to the channel conditions. Thus, design of an accurate and robust channel estimator is a crucial requirement for reliable communication through the channel, which is selective in time and frequency. In a MIMO configuration, a separate channel estimator has to be associated with each transmit/receive antenna pair, making the estimation algorithm complexity a primary concern. Pilot-assisted methods, relying on the insertion of reference symbols in certain frequencies and time slots, have been found attractive for identification of the doubly-selective radio channels from both the complexity and performance standpoint. In this dissertation, a family of the reduced-complexity estimators for the single and multiple-antenna OFDM systems is developed. The estimators are based on the transform-domain processing and have the same order of computational complexity, irrespective of the number of pilot subcarriers and their positioning. The common estimator structure represents a cascade of successive small-dimension filtering modules. The number of modules, as well as their order inside the cascade, is determined by the class of the estimator (one or two-dimensional) and availability of the channel statistics (correlation and signal-to-noise power ratio). For fine precision estimation in the multipath channels with statistics not known a priori, we propose recursive design of the filtering modules. Simulation results show that in the steady state, performance of the recursive estimators approaches that of their theoretical counterparts, which are optimal in the minimum mean square error (MMSE) sense. In contrast to the majority of the channel estimators developed so far, our modular-type architectures are suitable for the reconfigurable OFDM transceivers where the actual channel conditions influence the decision of what class of filtering algorithm to use, and how to allot pilot subcarrier positions in the band. In the pilot-assisted transmissions, channel estimation and detection are performed separately from each other over the distinct subcarrier sets. The estimator output is used only to construct the detector transform, but not as the detector input. Since performance of both channel estimation and detection depends on the signal-to-noise power vi ratio (SNR) at the corresponding subcarriers, there is a dilemma of the optimal power allocation between the data and the pilot symbols as these are conflicting requirements under the total transmit power constraint. The problem is exacerbated by the variety of channel estimators. Each kind of estimation algorithm is characterised by its own SNR gain, which in general can vary depending on the channel correlation. In this dissertation, we optimise pilot-data power allocation for the case of developed low-complexity one and two-dimensional MMSE channel estimators. The resultant contribution is manifested by the closed-form analytical expressions of the upper bound (suboptimal approximate value) on the optimal pilot-to-data power ratio (PDR) as a function of a number of design parameters (number of subcarriers, number of pilots, number of transmit antennas, effective order of the channel model, maximum Doppler shift, SNR, etc.). The resultant PDR equations can be applied to the MIMO-OFDM systems with arbitrary arrangement of the pilot subcarriers, operating in an arbitrary multipath fading channel. These properties and relatively simple functional representation of the derived analytical PDR expressions are designated to alleviate the challenging task of on-the-fly optimisation of the adaptive SM-MIMO-OFDM system, which is capable of adjusting transmit signal configuration (e.g., block length, number of pilot subcarriers or antennas) according to the established channel conditions

    HIGH RESOLUTION TIME-OF-ARRIVAL RANGING OF WIRELESS SENSOR NODES IN NON-HOMOGENOUS ENVIRONMENTS

    Get PDF
    Wireless Sensor Networks (WSN) have emerging applications in homogeneous environments such as free space. In addition, WSNs are finding new applications in non-homogeneous (NH) media. All referred applications entail location information of measured data or observed event. Localization in WSNs is considered as the leading remedy, which refers to the procedure of obtaining the sensor nodes relative location utilizing range measurements. Localization via Time-of-Arrival (ToA) estimation has received considerable attention because of high precision and low complexity implementation, however, the traditional techniques are not feasible in NH media due to frequency dispersion of transmitted ranging waveform. In this work, a novel and effective ToA-based ranging technique for localization in NH media consisting of frequency dispersive sub-media is proposed. First challenges of ToA estimation in NH media regarding frequency dispersion is investigated. Here, a novel technique which improves ToA estimation resolution at fixed bandwidth via maximum rising level detector (MRLD) technique is discussed. The MRLD receiver utilizes oversampling and multiple correlation paths to evaluate with high resolution the path corresponding to the maximum rising level of matched filters output. In order to achieve higher resolution, a novel and effective ToA estimation is introduced that incorporates orthogonal frequency division multiple access (OFDMA) subcarriers. In the proposed technique, pre-allocated orthogonal subcarriers are utilized to construct a ranging waveform which enables high performance ToA estimation in dispersive NH media in frequency domain. Here, we show that each frequency component of propagated waveform is received with different time delay and phase which dramatically increases the number of unknowns in the received signal system model. Then, we propose a novel idea based on frequency domain analysis of the transmitted OFDMA subcarriers to reduce the number of unknowns exploiting feasible approximations. Finally, the proposed ToA technique is applied multiple times at different carrier frequencies to create a system of linear equations which can be solved to compute the available sub-mediums thickness and range. Simulation results prove that the proposed technique offers high resolution range measurements given simulated ToA estimation error at different signal to noise ratio regimes in NH media

    Resource Allocation for Broadband Wireless Access Networks with Imperfect CSI

    Get PDF
    The high deployment and maintenance costs of last mile wireline networks (i.e., DSL and cable networks) have urged service providers to search for new cost-effective solutions to provide broadband connectivity. Broadband wireless access (BWA) networks, which offer a wide coverage area and high transmission rates in addition to their fast and low-cost deployment, have emerged as an alternative to last mile wireline networks. Therefore, BWA networks are expected to be deployed in areas with different terrain profiles (e.g., urban, suburban, rural) where wireless communication faces different channel impairments. This fact necessitates the adoption of various transmission technologies that combat the channel impairments of each profile. Implementation scenarios of BWA networks considered in this thesis are multicarrier-based direct transmission and single carrier-based cooperative transmission scenarios. The performance of these transmission technologies highly depends on how resources are allocated. In this thesis, we focus on the development of practical resource allocation schemes for the mentioned BWA networks implementation scenarios. In order to develop practical schemes, the imperfection of channel state information (CSI) and computational power limitations are among considered practical implementation issues. The design of efficient resource allocation schemes at the MAC layer heavily relies on the CSI reported from the PHY layer as a measure of the wireless channel condition. The channel estimation error and feedback delay renders the reported CSI erroneous. The inaccuracy in CSI propagates to higher layers, resulting in performance degradation. Although this effect is intuitive, a quantitative measure of this degradation is necessary for the design of practical resource allocation schemes. An approach to the evaluation of the ergodic mutual information that reflects this degradation is developed for single carrier, multicarrier, direct, and cooperative scenarios with inaccurate CSI. Given the CSI estimates and estimation error statistics, the presented evaluation of ergodic mutual information can be used in resource allocation and in assessing the severity of estimation error on performance degradation. A point-to-multipoint (PMP) network that employs orthogonal frequency division multiple access (OFDMA) is considered as one of the most common implementation scenarios of BWA networks. Replacing wireline networks requires not only providing the last mile connectivity to subscribers but also supporting their diverse services with stringent quality of service (QoS) requirements. Therefore, the resource allocation problem (i.e., subcarriers, rate and power allocation) is modeled as a network utility maximization (NUM) one that captures the characteristics of this implementation scenario. A dual decomposition-based resource allocation scheme that takes into consideration the diversity of service requirements and inaccuracy of the CSI estimation is developed. Numerical evaluations and simulations are conducted to validate our theoretical claims that the scheme maximizes resource utilization, coordinates with the call admission controller to guarantee QoS, and accounts for CSI inaccuracy. Cooperation has recently received great attention from the research community and industry because of its low cost and fast deployment in addition to the performance improvement it brings to BWA networks. In cooperative scenarios, subscribers cooperate to relay each other's signals. For this implementation scenario of BWA networks, a robust and constrained Kalman filter-based power allocation scheme is proposed to minimize power consumption and guarantee bit error probability (BEP) requirements. The proposed scheme is robust to CSI inaccuracy, responsive to changes in BEP requirements, and optimal in allocating resources. In summary, research results presented in this thesis contribute to the development of practical resource allocation schemes for BWA networks

    Channel Estimation for Wireless OFDM Communications

    Get PDF

    Physical Layer Techniques for Wireless Communication Systems

    Get PDF
    The increasing diffusion of mobile devices requiring, everywhere and every time, reliable connections able to support the more common applications, induced in the last years the deployment of telecommunication networks based on technologies capable to respond effectively to the ever-increasing market demand, still a long way off from saturation level. Multicarrier transmission techniques employed in standards for local networks (Wi-Fi) and metropolitan networks (WiMAX) and for many years hot research topic, have been definitely adopted beginning from the fourth generation of cellular systems (LTE). The adoption of multicarrier signaling techniques if on one hand has brought significant advantages to counteract the detrimental effects in environments with particularly harsh propagation channel, on the other hand, has imposed very strict requirements on sensitivity to recovery errors of the carrier frequency offset (CFO) due to the resulting impact on correct signal detection. The main focus of the thesis falls in this area, investigating some aspects relating to synchronization procedures for system based on multicarrier signaling. Particular reference will be made to a network entry procedure for LTE networks and to CFO recovery for OFDM, fltered multitone modulation and direct conversion receivers. Other contributions pertaining to physical layer issues for communication systems, both radio and over acoustic carrier, conclude the thesis

    Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

    Get PDF
    To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation framework, the problem of symbol time offset (STO) and carrier frequency offset (CFO) estimation is investigated and synchronization approaches, which can operate in burst and continuous transmissions, are designed. The first part of this work presents the modulation principles of prominent 5G candidate waveforms and then focuses on the GFDM basic and advanced attributes. The GFDM concept is extended towards the use of OQAM, introducing the novel frequency-shift OQAM-GFDM, and a new low complexity model based on signal processing carried out in the time domain. A new prototype filter proposal highlights the benefits obtained in terms of a reduced out-of-band (OOB) radiation and more attractive hardware implementation cost. With proper parameterization of the advanced GFDM, the achieved gains are applicable to other filtered OFDM waveforms. In the second part, a search approach for estimating STO and CFO in GFDM is evaluated. A self-interference metric is proposed to quantify the effective SNR penalty caused by the residual time and frequency misalignment or intrinsic inter-symbol interference (ISI) and inter-carrier interference (ICI) for arbitrary pulse shape design in GFDM. In particular, the ICI can be used as a non-data aided approach for frequency estimation. Then, GFDM training sequences, defined either as an isolated preamble or embedded as a midamble or pseudo-circular pre/post-amble, are designed. Simulations show better OOB emission and good estimation results, either comparable or superior, to state-of-the-art OFDM system in wireless channels

    Blind Estimation of OFDM System Parameters for Automatic Signal Identification

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has gained worldwide popular­ ity in broadband wireless communications recently due to its high spectral efficiency and robust performance in multipath fading channels. A growing trend of smart receivers which can support and adapt to multiple OFDM based standards auto­ matically brings the necessity of identifying different standards by estimating OFDM system parameters without a priori information. Consequently, blind estimation and identification of OFDM system parameters has received considerable research atten­ tions. Many techniques have been developed for blind estimation of various OFDM parameters, whereas estimation of the sampling frequency is often ignored. Further­ more, the estimated sampling frequency of an OFDM signal has to be very accurate for data recovery due to the high sensitivity of OFDM signals to sampling clock offset. To address the aforementioned problems, we propose a two-step cyclostation- arity based algorithm with low computational complexity to precisely estimate the sampling frequency of a received oversampled OFDM signal. With this estimated sampling frequency and oversampling ratio, other OFDM system parameters, i.e., the number of subcarriers, symbol duration and cyclic prefix (CP) length can be es­ timated based on the cyclic property from CP sequentially. In addition, modulation scheme used in the OFDM can be classified based on the higher-order statistics (HOS) of the frequency domain OFDM signal. All the proposed algorithms are verified by a lab testing system including a vec­ tor signal generator, a spectrum analyzer and a high speed digitizer. The evaluation results confirm the high precision and efficacy of the proposed algorithm in realistic scenarios

    Timing Recovery for DOCSIS 3.1 Upstream OFDMA Signals

    Get PDF
    Data-Over-Cable Service Interface Specification (DOCSIS) is a global standard for cable communication systems. Before version 3.1, the standard has always specified single-carrier (SC) quadrature-amplitude modulation (QAM) as the modulation scheme. Given that the multi-carrier orthogonal frequency-division multiplexing (OFDM) technique has been increasingly popular and adopted in many wired/wireless communications systems, the newest cable communication standard, DOCSIS 3.1, also introduces OFDM as a major upgrade to improve transmission efficiency. In any digital communication systems, timing synchronization is required to determine and compensate for the timing offset from the transmitter to the receiver. This task is especially crucial and challenging in an OFDM system due to its very high sensitivity to synchronization errors. Although there have been many studies on the topic of OFDM timing synchronization, none of the existing methods are not directly applicable to DOCSIS 3.1 systems. Therefore, the main objective of this research is to develop effective and affordable timing synchronization algorithms for the DOCSIS 3.1 upstream signal. Specifically, three timing synchronization algorithms are proposed to comply and take advantage of the structure of the ranging signal (i.e., the signal used for synchronization purpose) specified in DOCSIS 3.1 standard. The proposed methods are evaluated under a realistic multipath uplink cable channel using computer simulation. The first algorithm makes use of the repetitive pattern of the symbol pairs in the ranging signal. The locations of the symbol pairs are determined by calculating a correlation metric and identifying its maximum value. The second and third algorithms are developed so that they exploit the mirrored symmetry of the binary phase-shift keying (BPSK)-modulated time-domain samples, corresponding to the first non-zero symbol in the ranging signal, and look for the exact location of the symmetry point. The first algorithm, with very low hardware complexity, provides reasonable performance under normal traffic and channel conditions. However its performance under a severe channel condition and heavy traffic is not satisfactory. The second and third algorithms provide much more accurate timing estimation results, even under the severe channel condition and heavy traffic flow. Since the second algorithm requires an enormous increase in hardware complexity, a few options are proposed to reduce the hardware complexity but it is still much higher than the complexity of the first algorithm. Applying the same complexity reduction techniques it is demonstrated that the third algorithm has similar hardware complexity to the first algorithm, while its timing estimation performance remains excellent
    corecore