383 research outputs found

    Strong Electronic Identification: Survey & Scenario Planning

    Get PDF
    The deployment of more high-risk services such as online banking and government services on the Internet has meant that the need and demand for strong electronic identity is bigger today more than ever. Different stakeholders have different reasons for moving their services to the Internet, including cost savings, being closer to the customer or citizen, increasing volume and value of services among others. This means that traditional online identification schemes based on self-asserted identities are no longer sufficient to cope with the required level of assurance demanded by these services. Therefore, strong electronic identification methods that utilize identifiers rooted in real world identities must be provided to be used by customers and citizens alike on the Internet. This thesis focuses on studying state-of-the-art methods for providing reliable and mass market strong electronic identity in the world today. It looks at concrete real-world examples that enable real world identities to be transferred and used in the virtual world of the Internet. The thesis identifies crucial factors that determine what constitutes a strong electronic identity solution and through these factors evaluates and compares the example solutions surveyed in the thesis. As the Internet become more pervasive in our lives; mobile devices are becoming the primary devices for communication and accessing Internet services. This has thus, raised the question of what sort of strong electronic identity solutions could be implemented and how such solutions could adapt to the future. To help to understand the possible alternate futures, a scenario planning and analysis method was used to develop a series of scenarios from underlying key economic, political, technological and social trends and uncertainties. The resulting three future scenarios indicate how the future of strong electronic identity will shape up with the aim of helping stakeholders contemplate the future and develop policies and strategies to better position themselves for the future

    Mobile Identity, Credential, and Access Management Framework

    Get PDF
    Organizations today gather unprecedented quantities of data from their operations. This data is coming from transactions made by a person or from a connected system/application. From personal devices to industry including government, the internet has become the primary means of modern communication, further increasing the need for a method to track and secure these devices. Protecting the integrity of connected devices collecting data is critical to ensure the trustworthiness of the system. An organization must not only know the identity of the users on their networks and have the capability of tracing the actions performed by a user but they must trust the system providing them with this knowledge. This increase in the pace of usage of personal devices along with a lack of trust in the internet has driven demand for trusted digital identities. As the world becomes increasingly mobile with the number of smart phone users growing annually and the mobile web flourishing, it is critical to implement strong security on mobile devices. To manage the vast number of devices and feel confident that a machine’s identity is verifiable, companies need to deploy digital credentialing systems with a strong root of trust. As passwords are not a secure method of authentication, mobile devices and other forms of IoT require a means of two-factor authentication that meets NIST standards. Traditionally, this has been done with Public Key Infrastructure (PKI) through the use of a smart card. Blockchain technologies combined with PKI can be utilized in such a way as to provide an identity and access management solution for the internet of things (IoT). Improvements to the security of Radio Frequency Identification (RFID) technology and various implementations of blockchain make viable options for managing the identity and access of IoT devices. When PKI first began over two decades ago, it required the use of a smart card with a set of credentials known as the personal identity verification (PIV) card. The PIV card (something you have) along with a personal identification number (PIN) (something you know) were used to implement two-factor authentication. Over time the use of the PIV cards has proven challenging as mobile devices lack the integrated smart card readers found in laptop and desktop computers. Near Field Communication (NFC) capability in most smart phones and mobile devices provides a mechanism to allow a PIV card to be read by a mobile device. In addition, the existing PKI system must be updated to meet the demands of a mobile focused internet. Blockchain technology is the key to modernizing PKI. Together, blockchain-based PKI and NFC will provide an IoT solution that will allow industry, government, and individuals a foundation of trust in the world wide web that is lacking today

    CONSTRUCTION OF EFFICIENT AUTHENTICATION SCHEMES USING TRAPDOOR HASH FUNCTIONS

    Get PDF
    In large-scale distributed systems, where adversarial attacks can have widespread impact, authentication provides protection from threats involving impersonation of entities and tampering of data. Practical solutions to authentication problems in distributed systems must meet specific constraints of the target system, and provide a reasonable balance between security and cost. The goal of this dissertation is to address the problem of building practical and efficient authentication mechanisms to secure distributed applications. This dissertation presents techniques to construct efficient digital signature schemes using trapdoor hash functions for various distributed applications. Trapdoor hash functions are collision-resistant hash functions associated with a secret trapdoor key that allows the key-holder to find collisions between hashes of different messages. The main contributions of this dissertation are as follows: 1. A common problem with conventional trapdoor hash functions is that revealing a collision producing message pair allows an entity to compute additional collisions without knowledge of the trapdoor key. To overcome this problem, we design an efficient trapdoor hash function that prevents all entities except the trapdoor key-holder from computing collisions regardless of whether collision producing message pairs are revealed by the key-holder. 2. We design a technique to construct efficient proxy signatures using trapdoor hash functions to authenticate and authorize agents acting on behalf of users in agent-based computing systems. Our technique provides agent authentication, assurance of agreement between delegator and agent, security without relying on secure communication channels and control over an agent’s capabilities. 3. We develop a trapdoor hash-based signature amortization technique for authenticating real-time, delay-sensitive streams. Our technique provides independent verifiability of blocks comprising a stream, minimizes sender-side and receiver-side delays, minimizes communication overhead, and avoids transmission of redundant information. 4. We demonstrate the practical efficacy of our trapdoor hash-based techniques for signature amortization and proxy signature construction by presenting discrete log-based instantiations of the generic techniques that are efficient to compute, and produce short signatures. Our detailed performance analyses demonstrate that the proposed schemes outperform existing schemes in computation cost and signature size. We also present proofs for security of the proposed discrete-log based instantiations against forgery attacks under the discrete-log assumption
    • …
    corecore