60 research outputs found

    Matrices commuting with a given normal tropical matrix

    Get PDF
    Consider the space MnnorM_n^{nor} of square normal matrices X=(xij)X=(x_{ij}) over R{}\mathbb{R}\cup\{-\infty\}, i.e., xij0-\infty\le x_{ij}\le0 and xii=0x_{ii}=0. Endow MnnorM_n^{nor} with the tropical sum \oplus and multiplication \odot. Fix a real matrix AMnnorA\in M_n^{nor} and consider the set Ω(A)\Omega(A) of matrices in MnnorM_n^{nor} which commute with AA. We prove that Ω(A)\Omega(A) is a finite union of alcoved polytopes; in particular, Ω(A)\Omega(A) is a finite union of convex sets. The set ΩA(A)\Omega^A(A) of XX such that AX=XA=AA\odot X=X\odot A=A is also a finite union of alcoved polytopes. The same is true for the set Ω(A)\Omega'(A) of XX such that AX=XA=XA\odot X=X\odot A=X. A topology is given to MnnorM_n^{nor}. Then, the set ΩA(A)\Omega^{A}(A) is a neighborhood of the identity matrix II. If AA is strictly normal, then Ω(A)\Omega'(A) is a neighborhood of the zero matrix. In one case, Ω(A)\Omega(A) is a neighborhood of AA. We give an upper bound for the dimension of Ω(A)\Omega'(A). We explore the relationship between the polyhedral complexes spanAspan A, spanXspan X and span(AX)span (AX), when AA and XX commute. Two matrices, denoted A\underline{A} and Aˉ\bar{A}, arise from AA, in connection with Ω(A)\Omega(A). The geometric meaning of them is given in detail, for one example. We produce examples of matrices which commute, in any dimension.Comment: Journal versio

    Multivariate volume, Ehrhart, and hh^*-polynomials of polytropes

    Full text link
    The univariate Ehrhart and hh^*-polynomials of lattice polytopes have been widely studied. We describe methods from toric geometry for computing multivariate versions of volume, Ehrhart and hh^*-polynomials of lattice polytropes, which are both tropically and classically convex. These algorithms are applied to all polytropes of dimensions 2,3 and 4, yielding a large class of integer polynomials. We give a complete combinatorial description of the coefficients of volume polynomials of 3-dimensional polytropes in terms of regular central subdivisions of the fundamental polytope. Finally, we provide a partial characterization of the analogous coefficients in dimension 4.Comment: 19 page

    Examples and counterexamples in Ehrhart theory

    Full text link
    This article provides a comprehensive exposition about inequalities that the coefficients of Ehrhart polynomials and hh^*-polynomials satisfy under various assumptions. We pay particular attention to the properties of Ehrhart positivity as well as unimodality, log-concavity and real-rootedness for hh^*-polynomials. We survey inequalities that arise when the polytope has different normality properties. We include statements previously unknown in the Ehrhart theory setting, as well as some original contributions in this topic. We address numerous variations of the conjecture asserting that IDP polytopes have a unimodal hh^*-polynomial, and construct concrete examples that show that these variations of the conjecture are false. Explicit emphasis is put on polytopes arising within algebraic combinatorics. Furthermore, we describe and construct polytopes having pathological properties on their Ehrhart coefficients and roots, and we indicate for the first time a connection between the notions of Ehrhart positivity and hh^*-real-rootedness. We investigate the log-concavity of the sequence of evaluations of an Ehrhart polynomial at the non-negative integers. We conjecture that IDP polytopes have a log-concave Ehrhart series. Many additional problems and challenges are proposed.Comment: Comments welcome
    corecore