18,396 research outputs found

    Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

    Get PDF
    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L1 and the other around L2, with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the "interior" and "exterior" Hill's regions and other resonant phenomena

    Parking a Spacecraft near an Asteroid Pair

    Get PDF
    This paper studies the dynamics of a spacecraft moving in the field of a binary asteroid. The asteroid pair is modeled as a rigid body and a sphere moving in a plane, while the spacecraft moves in space under the influence of the gravitational field of the asteroid pair, as well as that of the sun. This simple model captures the coupling between rotational and translational dynamics. By assuming that the binary dynamics is in a relative equilibrium, a restricted model for the spacecraft in orbit about them is constructed that also includes the direct effect of the sun on the spacecraft dynamics. The standard restricted three-body problem (RTBP) is used as a starting point for the analysis of the spacecraft motion. We investigate how the triangular points of the RTBP are modified through perturbations by taking into account two perturbations, namely, that one of the primaries is no longer a point mass but is an extended rigid body, and second, taking into account the effect of orbiting the sun. The stable zones near the modified triangular equilibrium points of the binary and a normal form of the Hamiltonian around them are used to compute stable periodic and quasi-periodic orbits for the spacecraft, which enable it to observe the asteroid pair while the binary orbits around the sun

    Dynamical Systems, Stability, and Chaos

    Full text link
    In this expository and resources chapter we review selected aspects of the mathematics of dynamical systems, stability, and chaos, within a historical framework that draws together two threads of its early development: celestial mechanics and control theory, and focussing on qualitative theory. From this perspective we show how concepts of stability enable us to classify dynamical equations and their solutions and connect the key issues of nonlinearity, bifurcation, control, and uncertainty that are common to time-dependent problems in natural and engineered systems. We discuss stability and bifurcations in three simple model problems, and conclude with a survey of recent extensions of stability theory to complex networks.Comment: 28 pages, 10 figures. 26/04/2007: The book title was changed at the last minute. No other changes have been made. Chapter 1 in: J.P. Denier and J.S. Frederiksen (editors), Frontiers in Turbulence and Coherent Structures. World Scientific Singapore 2007 (in press

    Constructing a Low Energy Transfer Between Jovian Moons

    Get PDF
    There has recently been considerable interest in sending a spacecraft to orbit Europa, the smallest of the four Galilean moons of Jupiter. The trajectory design involved in effecting a capture by Europa presents formidable challenges to traditional conic analysis since the regimes of motion involved depend heavily on three-body dynamics. New three-body perspectives are required to design successful and efficient missions which take full advantage of the natural dynamics. Not only does a three-body approach provide low-fuel trajectories, but it also increases the flexibility and versatility of missions. We apply this approach to design a new mission concept wherein a spacecraft "leap-frogs" between moons, orbiting each for a desired duration in a temporary capture orbit. We call this concept the "Petit Grand Tour." For this application, we apply dynamical systems techniques developed in a previous paper to design a Europa capture orbit. We show how it is possible, using a gravitional boost from Ganymede, to go from a jovicentric orbit beyond the orbit of Ganymede to a ballistic capture orbit around Europa. The main new technical result is the employment of dynamical channels in the phase space - tubes in the energy surface which naturally link the vicinity of Ganymede to the vicinity of Europa. The transfer V necessary to jump from one moon to another is less than half that required by a standard Hohmann transfer
    corecore