435 research outputs found

    Multivariate Splines and Algebraic Geometry

    Get PDF
    Multivariate splines are effective tools in numerical analysis and approximation theory. Despite an extensive literature on the subject, there remain open questions in finding their dimension, constructing local bases, and determining their approximation power. Much of what is currently known was developed by numerical analysts, using classical methods, in particular the so-called Bernstein-B´ezier techniques. Due to their many interesting structural properties, splines have become of keen interest to researchers in commutative and homological algebra and algebraic geometry. Unfortunately, these communities have not collaborated much. The purpose of the half-size workshop is to intensify the interaction between the different groups by bringing them together. This could lead to essential breakthroughs on several of the above problems

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Foundations of space-time finite element methods: polytopes, interpolation, and integration

    Full text link
    The main purpose of this article is to facilitate the implementation of space-time finite element methods in four-dimensional space. In order to develop a finite element method in this setting, it is necessary to create a numerical foundation, or equivalently a numerical infrastructure. This foundation should include a collection of suitable elements (usually hypercubes, simplices, or closely related polytopes), numerical interpolation procedures (usually orthonormal polynomial bases), and numerical integration procedures (usually quadrature rules). It is well known that each of these areas has yet to be fully explored, and in the present article, we attempt to directly address this issue. We begin by developing a concrete, sequential procedure for constructing generic four-dimensional elements (4-polytopes). Thereafter, we review the key numerical properties of several canonical elements: the tesseract, tetrahedral prism, and pentatope. Here, we provide explicit expressions for orthonormal polynomial bases on these elements. Next, we construct fully symmetric quadrature rules with positive weights that are capable of exactly integrating high-degree polynomials, e.g. up to degree 17 on the tesseract. Finally, the quadrature rules are successfully tested using a set of canonical numerical experiments on polynomial and transcendental functions.Comment: 34 pages, 18 figure

    Computer Science for Continuous Data:Survey, Vision, Theory, and Practice of a Computer Analysis System

    Get PDF
    Building on George Boole's work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied "his" machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics

    In Memory of Vladimir Gerdt

    Get PDF
    Center for Computational Methods in Applied Mathematics of RUDN, Professor V.P. Gerdt, whose passing was a great loss to the scientific center and the computer algebra community. The article provides biographical information about V.P. Gerdt, talks about his contribution to the development of computer algebra in Russia and the world. At the end there are the author’s personal memories of V.P. Gerdt.Настоящая статья - мемориальная, она посвящена памяти руководителя научного центра вычислительных методов в прикладной математике РУДН, профессора В.П. Гердта, чей уход стал невосполнимой потерей для научного центра и всего сообщества компьютерной алгебры. В статье приведены биографические сведения о В.П. Гердте, рассказано о его вкладе в развитие компьютерной алгебры в России и мире. В конце приведены личные воспоминания автора о В.П. Гердте

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions

    Studies in the Fields of Space Flight and Guidance Theory

    Get PDF
    Compiled in this paper are 11 progress papers from 7 of the agencies working under contract to MSFC in the areas of guidance theory and space flight theory. This is the second paper of the "Progress Reports" and covers the period from December 1, 1961 to June 15, 1962. Extensive references are made to "Progress Report No. 1." This second progress report is referred to as "report" and "Progress Report No. 1" will be referred to as the "first report" in this introduction. Information given in the first report is not repeated herein. The reports of the various contractors will be referred to by index number as papers. There are two parallel series of publications covering the over-all activities at MSFC in the areas of guidance theory and space flight theory. One is the series of progress reports of which this paper is the second in the series. The other is the series of "Status Reports on Theory of Space Flight and Adaptive Guidance." These series along with a few other special reports, give a complete picture of the immediate objectives, accomplishments, and final goals of Aeroballistics Division and associated cont
    corecore