593 research outputs found

    Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 243)

    Get PDF
    This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Joint University Program for Air Transportation Research, 1988-1989

    Get PDF
    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented

    Joint University Program for Air Transportation Research, 1989-1990

    Get PDF
    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented

    Aeronautical engineering: A continuing bibliography with indexes (supplement 218)

    Get PDF
    This bibliography lists 469 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1987

    Optimal control of road vehicles: theory and applications

    Get PDF
    In this thesis Optimal Control (OC) of road vehicles is studied especially focusing on minimum lap time simulations. The theory underlying the most used optimal control solving techniques is described, including both the Pontryagin Maximum Principle and the reduction to Nonlinear Programming. Direct and indirect methods for optimal control problems are presented and compared against minimum lap time simulations (LTS). Modelling of vehicles for OC-LTSs is studied in order to understand how different design choices can affect simulation outcomes. Novel multibody models of four wheeled vehicles - a GP2 car and a go-kart - for OC-LTSs are developed and validated thorough comparison with experimental data. Particular attention is dedicated to the simulation of tyre load dynamics, that is achieved by a proper modelling of the chassis and suspension motions and of the aerodynamic forces. OC-LTSs are applied to electric vehicles too, specifically to optimise the design of an electric motorbike taking part at the Tourist Trophy Zero competition. A concise yet effective model is proposed in order to perform reliable simulations on a 60km long road in a reasonable amount of time. Experimental data is used to validate the model. A direct full collocation transcription method for OCPs dealing with implicit differential equations and control derivatives is presented, moreover the structure of the resulting NLP problem is accurately described. The relationship between the first order necessary conditions and the Lagrange multipliers of the NLP and OC problems are derived under the adopted discretisation scheme. The presented transcription method is implemented into a software which is currently in use at the University of Padova to solve OC-LTSs

    Aeronautical engineering: A continuing bibliography with indexes (supplement 272)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 274)

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 262 through 273 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number

    Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1

    Get PDF
    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making

    The 1990 Johnson Space Center bibliography of scientific and technical papers

    Get PDF
    Abstracts are presented of scientific and technical papers written and/or presented by L. B. Johnson Space Center (JSC) authors, including civil servants, contractors, and grantees, during the calendar year of 1990. Citations include conference and symposium presentations, papers published in proceedings or other collective works, seminars, and workshop results, NASA formal report series (including contractually required final reports), and articles published in professional journals

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis
    • …
    corecore