1,441 research outputs found

    Symbolic verification of event–condition–action rules in intelligent environments

    Get PDF
    In this paper we show how state-of-the art SMT-based techniques for software verification can be employed in the verification of event–condition–action rules in intelligent environments. Moreover, we exploit the specific features of intelligent environments to optimise the verification process. We compare our approach with previous work in a detailed evaluation section, showing how it improves both performance and expressivity of the language for event–condition–action rules

    Symbolic verification of event–condition–action rules in intelligent environments

    Get PDF
    In this paper we show how state-of-the art SMT-based techniques for software verification can be employed in the verification of event–condition–action rules in intelligent environments. Moreover, we exploit the specific features of intelligent environments to optimise the verification process. We compare our approach with previous work in a detailed evaluation section, showing how it improves both performance and expressivity of the language for event–condition–action rules

    Distributed Programming of Smart Systems with Event-Condition-Action Rules

    Get PDF
    In recent years, event-driven programming languages, e.g. those based on Event Condition Action (ECA) rules, have emerged as a promising paradigm for implementing smart systems, such as IoT devices. Still, actual implementations are bound to a centralized infrastructure, limiting scalability and security. In this work, we present attribute-based memory updates (AbU), a new interaction mechanism aiming to extend the ECA programming paradigm to distributed systems. It relies on attribute-based communication, that is similar to broadcast, but receivers are selected “on the fly” by means of predicates over their attributes. With AbU, smart devices can be easily programmed via ECA rules and, at the same time, they can be deployed to a distributed network. Hence, a centralized infrastructure is not needed anymore: the computation is moved on the edge, improving reliability, scalability, privacy and security

    Distributed Programming of Smart Systems with Event-Condition-Action Rules (Short Paper)

    Get PDF
    In recent years, event-driven programming languages, e.g. those based on Event Condition Action (ECA) rules, have emerged as a promising paradigm for implementing smart systems, such as IoT devices. Still, actual implementations are bound to a centralized infrastructure, limiting scalability and security. In this work, we present attribute-based memory updates (AbU), a new interaction mechanism aiming to extend the ECA programming paradigm to distributed systems. It relies on attribute-based communication, that is similar to broadcast, but receivers are selected "on the fly" by means of predicates over their attributes. With AbU, smart devices can be easily programmed via ECA rules and, at the same time, they can be deployed to a distributed network. Hence, a centralized infrastructure is not needed anymore: the computation is moved on the edge, improving reliability, scalability, privacy and security

    Analysis and verification of ECA rules in intelligent environments

    Get PDF
    Intelligent Environments (IEs) are physical spaces where Information Technology (IT) and other pervasive computing technologies are combined in order to achieve specific goals for the users and the environment. IEs have the goal of enriching user experience, increasing awareness of the environment. A number of applications are currently being deployed in domains ranging from smart homes to e-health and autonomous vehicles. Quite often IE support human activities, thus essential requirements to be ensured are correctness, reliability, safety and security. In this paper we present how a set of techniques and tools that have been developed for the verification of software can be employed in the verification of IE described by means of event-condition-action rules. More precisely, we reduce the problem of verifying key properties of these rules to satisfiability and termination problems that can be addressed using state-of-the-art Satisfiability Modulo Theory (SMT) solvers and program analysers. Our approach has been implemented in a tool called vIRONy. Our approach has been validated on a number of case studies from the literature
    • …
    corecore