1,851 research outputs found

    Constructing Parsimonious Analytic Models for Dynamic Systems via Symbolic Regression

    Full text link
    Developing mathematical models of dynamic systems is central to many disciplines of engineering and science. Models facilitate simulations, analysis of the system's behavior, decision making and design of automatic control algorithms. Even inherently model-free control techniques such as reinforcement learning (RL) have been shown to benefit from the use of models, typically learned online. Any model construction method must address the tradeoff between the accuracy of the model and its complexity, which is difficult to strike. In this paper, we propose to employ symbolic regression (SR) to construct parsimonious process models described by analytic equations. We have equipped our method with two different state-of-the-art SR algorithms which automatically search for equations that fit the measured data: Single Node Genetic Programming (SNGP) and Multi-Gene Genetic Programming (MGGP). In addition to the standard problem formulation in the state-space domain, we show how the method can also be applied to input-output models of the NARX (nonlinear autoregressive with exogenous input) type. We present the approach on three simulated examples with up to 14-dimensional state space: an inverted pendulum, a mobile robot, and a bipedal walking robot. A comparison with deep neural networks and local linear regression shows that SR in most cases outperforms these commonly used alternative methods. We demonstrate on a real pendulum system that the analytic model found enables a RL controller to successfully perform the swing-up task, based on a model constructed from only 100 data samples

    Intrinsic Motivation Systems for Autonomous Mental Development

    Get PDF
    Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development.The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without being constructed in a supervised manner. Two experiments are presented illustrating the stage-like organization emerging with this mechanism. In one of them, a physical robot is placed on a baby play mat with objects that it can learn to manipulate. Experimental results show that the robot first spends time in situations which are easy to learn, then shifts its attention progressively to situations of increasing difficulty, avoiding situations in which nothing can be learned. Finally, these various results are discussed in relation to more complex forms of behavioral organization and data coming from developmental psychology. Key words: Active learning, autonomy, behavior, complexity, curiosity, development, developmental trajectory, epigenetic robotics, intrinsic motivation, learning, reinforcement learning, values

    Learning Equations for Extrapolation and Control

    Full text link
    We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.Comment: 9 pages, 9 figures, ICML 201

    Benchmarking Deep Reinforcement Learning for Continuous Control

    Get PDF
    Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuous control due to the lack of a commonly adopted benchmark. In this work, we present a benchmark suite of continuous control tasks, including classic tasks like cart-pole swing-up, tasks with very high state and action dimensionality such as 3D humanoid locomotion, tasks with partial observations, and tasks with hierarchical structure. We report novel findings based on the systematic evaluation of a range of implemented reinforcement learning algorithms. Both the benchmark and reference implementations are released at https://github.com/rllab/rllab in order to facilitate experimental reproducibility and to encourage adoption by other researchers.Comment: 14 pages, ICML 201

    Evolutionary Reinforcement Learning: A Survey

    Full text link
    Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments. The integration of RL with deep learning has recently resulted in impressive achievements in a wide range of challenging tasks, including board games, arcade games, and robot control. Despite these successes, there remain several crucial challenges, including brittle convergence properties caused by sensitive hyperparameters, difficulties in temporal credit assignment with long time horizons and sparse rewards, a lack of diverse exploration, especially in continuous search space scenarios, difficulties in credit assignment in multi-agent reinforcement learning, and conflicting objectives for rewards. Evolutionary computation (EC), which maintains a population of learning agents, has demonstrated promising performance in addressing these limitations. This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL). We categorize EvoRL methods according to key research fields in RL, including hyperparameter optimization, policy search, exploration, reward shaping, meta-RL, and multi-objective RL. We then discuss future research directions in terms of efficient methods, benchmarks, and scalable platforms. This survey serves as a resource for researchers and practitioners interested in the field of EvoRL, highlighting the important challenges and opportunities for future research. With the help of this survey, researchers and practitioners can develop more efficient methods and tailored benchmarks for EvoRL, further advancing this promising cross-disciplinary research field

    Multiobjective optimization of electromagnetic structures based on self-organizing migration

    Get PDF
    Práce se zabývá popisem nového stochastického vícekriteriálního optimalizačního algoritmu MOSOMA (Multiobjective Self-Organizing Migrating Algorithm). Je zde ukázáno, že algoritmus je schopen řešit nejrůznější typy optimalizačních úloh (s jakýmkoli počtem kritérií, s i bez omezujících podmínek, se spojitým i diskrétním stavovým prostorem). Výsledky algoritmu jsou srovnány s dalšími běžně používanými metodami pro vícekriteriální optimalizaci na velké sadě testovacích úloh. Uvedli jsme novou techniku pro výpočet metriky rozprostření (spread) založené na hledání minimální kostry grafu (Minimum Spanning Tree) pro problémy mající více než dvě kritéria. Doporučené hodnoty pro parametry řídící běh algoritmu byly určeny na základě výsledků jejich citlivostní analýzy. Algoritmus MOSOMA je dále úspěšně použit pro řešení různých návrhových úloh z oblasti elektromagnetismu (návrh Yagi-Uda antény a dielektrických filtrů, adaptivní řízení vyzařovaného svazku v časové oblasti…).This thesis describes a novel stochastic multi-objective optimization algorithm called MOSOMA (Multi-Objective Self-Organizing Migrating Algorithm). It is shown that MOSOMA is able to solve various types of multi-objective optimization problems (with any number of objectives, unconstrained or constrained problems, with continuous or discrete decision space). The efficiency of MOSOMA is compared with other commonly used optimization techniques on a large suite of test problems. The new procedure based on finding of minimum spanning tree for computing the spread metric for problems with more than two objectives is proposed. Recommended values of parameters controlling the run of MOSOMA are derived according to their sensitivity analysis. The ability of MOSOMA to solve real-life problems from electromagnetics is shown in a few examples (Yagi-Uda and dielectric filters design, adaptive beam forming in time domain…).

    Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures

    Get PDF
    This chapter discusses an alternative approach for symbolic structures and solutions synthesis and demonstrates a comparison with other methods, for example Genetic Programming (GP) or Grammatical Evolution (GE). Generally, there are two well known methods, which can be used for symbolic structures synthesis by means of computers. The first one is called GP and the other is GE. Another interesting research was carried out by Artificial Immune Systems (AIS) or/and systems, which do not use tree structures like linear GP and other similar algorithm like Multi Expression Programming (MEP), etc. In this chapter, a different method called Analytic Programming (AP), is presented. AP is a grammar free algorithmic superstructure, which can be used by any programming language and also by any arbitrary Evolutionary Algorithm (EA) or another class of numerical optimization method. This chapter describes not only theoretical principles of AP, but also its comparative study with selected well known case examples from GP as well as applications on synthesis of: controller, systems of deterministic chaos, electronics circuits, etc. For simulation purposes, AP has been co-joined with EA’s like Differential Evolution (DE), Self-Organising Migrating Algorithm (SOMA), Genetic Algorithms (GA) and Simulated Annealing (SA). All case studies has been carefully prepared and repeated in order to get valid statistical data for proper conclusions.P(ED2.1.00/03.0089), P(GA102/09/1680), S, Z(MSM7088352101
    • …
    corecore