23,993 research outputs found

    Symbolic Links in the Open Directory Project

    Get PDF
    We present a study to develop an improved understanding of symbolic links in web directories. A symbolic link is a hyperlink that makes a directed connection from a web page along one path through a directory to a page along another path. While symbolic links are ubiquitous in web directories such as Yahoo!, they are under-studied, and as a result, their uses are poorly understood. A cursory analysis of symbolic links reveals multiple uses: to provide navigational shortcuts deeper into a directory, backlinks to more general categories, and multiclassification. We investigated these uses in the Open Directory Project (ODP), the largest, most comprehensive, and most widely distributed human-compiled taxonomy of links to websites, which makes extensive use of symbolic links. The results reveal that while symbolic links in ODP are used primarily for multiclassification, only few multiclassification links actually span top- and second-level categories. This indicates that most symbolic links in ODP are used to create multiclassification between topics nested more than two levels deep and suggests that there may be multiple uses of multiclassification links. We also situate symbolic links vis à vis other semantic and structural link types from hypermedia. We anticipate that the results and relationships identified and discussed in this paper will provide a foundation for (1) users for understanding the usages of symbolic links in a directory, (2) designers to employ symbolic links more effectively when building and maintaining directories and for crafting user interfaces to them, and (3) information retrieval researchers for further study of symbolic links in web directories

    The Digital Anatomist Information System and Its Use in the Generation and Delivery of Web-Based Anatomy Atlases

    Get PDF
    Advances in network and imaging technology, coupled with the availability of 3-D datasets such as the Visible Human, provide a unique opportunity for developing information systems in anatomy that can deliver relevant knowledge directly to the clinician, researcher or educator. A software framework is described for developing such a system within a distributed architecture that includes spatial and symbolic anatomy information resources, Web and custom servers, and authoring and end-user client programs. The authoring tools have been used to create 3-D atlases of the brain, knee and thorax that are used both locally and throughout the world. For the one and a half year period from June 1995–January 1997, the on-line atlases were accessed by over 33,000 sites from 94 countries, with an average of over 4000 ‘‘hits’’ per day, and 25,000 hits per day during peak exam periods. The atlases have been linked to by over 500 sites, and have received at least six unsolicited awards by outside rating institutions. The flexibility of the software framework has allowed the information system to evolve with advances in technology and representation methods. Possible new features include knowledge-based image retrieval and tutoring, dynamic generation of 3-D scenes, and eventually, real-time virtual reality navigation through the body. Such features, when coupled with other on-line biomedical information resources, should lead to interesting new ways for managing and accessing structural information in medicine

    The Semantic Web MIDI Tape: An Interface for Interlinking MIDI and Context Metadata

    Get PDF
    The Linked Data paradigm has been used to publish a large number of musical datasets and ontologies on the Semantic Web, such as MusicBrainz, AcousticBrainz, and the Music Ontology. Recently, the MIDI Linked Data Cloud has been added to these datasets, representing more than 300,000 pieces in MIDI format as Linked Data, opening up the possibility for linking fine-grained symbolic music representations to existing music metadata databases. Despite the dataset making MIDI resources available in Web data standard formats such as RDF and SPARQL, the important issue of finding meaningful links between these MIDI resources and relevant contextual metadata in other datasets remains. A fundamental barrier for the provision and generation of such links is the difficulty that users have at adding new MIDI performance data and metadata to the platform. In this paper, we propose the Semantic Web MIDI Tape, a set of tools and associated interface for interacting with the MIDI Linked Data Cloud by enabling users to record, enrich, and retrieve MIDI performance data and related metadata in native Web data standards. The goal of such interactions is to find meaningful links between published MIDI resources and their relevant contextual metadata. We evaluate the Semantic Web MIDI Tape in various use cases involving user-contributed content, MIDI similarity querying, and entity recognition methods, and discuss their potential for finding links between MIDI resources and metadata

    Users Guide for SnadiOpt: A Package Adding Automatic Differentiation to Snopt

    Full text link
    SnadiOpt is a package that supports the use of the automatic differentiation package ADIFOR with the optimization package Snopt. Snopt is a general-purpose system for solving optimization problems with many variables and constraints. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for large-scale linear and quadratic programming and for linearly constrained optimization, as well as for general nonlinear programs. The method used by Snopt requires the first derivatives of the objective and constraint functions to be available. The SnadiOpt package allows users to avoid the time-consuming and error-prone process of evaluating and coding these derivatives. Given Fortran code for evaluating only the values of the objective and constraints, SnadiOpt automatically generates the code for evaluating the derivatives and builds the relevant Snopt input files and sparse data structures.Comment: pages i-iv, 1-2

    REBOUND: An open-source multi-purpose N-body code for collisional dynamics

    Full text link
    REBOUND is a new multi-purpose N-body code which is freely available under an open-source license. It was designed for collisional dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily to work on a wide variety of different problems in astrophysics and beyond. REBOUND comes with three symplectic integrators: leap-frog, the symplectic epicycle integrator (SEI) and a Wisdom-Holman mapping (WH). It supports open, periodic and shearing-sheet boundary conditions. REBOUND can use a Barnes-Hut tree to calculate both self-gravity and collisions. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain decomposition and a distributed essential tree. Two new collision detection modules based on a plane-sweep algorithm are also implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is much longer than the other two and in simulations which are quasi-two dimensional with less than one million particles. In this work, we discuss the different algorithms implemented in REBOUND, the philosophy behind the code's structure as well as implementation specific details of the different modules. We present results of accuracy and scaling tests which show that the code can run efficiently on both desktop machines and large computing clusters.Comment: 10 pages, 9 figures, accepted by A&A, source code available at https://github.com/hannorein/reboun

    An overview of the planned CCAT software system

    Get PDF
    CCAT will be a 25m diameter sub-millimeter telescope capable of operating in the 0.2 to 2.1mm wavelength range. It will be located at an altitude of 5600m on Cerro Chajnantor in northern Chile near the ALMA site. The anticipated first generation instruments include large format (60,000 pixel) kinetic inductance detector (KID) cameras, a large format heterodyne array and a direct detection multi-object spectrometer. The paper describes the architecture of the CCAT software and the development strategy.Comment: 17 pages, 6 figures, to appear in Software and Cyberinfrastructure for Astronomy III, Chiozzi & Radziwill (eds), Proc. SPIE 9152, paper ID 9152-10

    Supporting Multiple Paths to Objects in Information Hierarchies: Faceted Classification, Faceted Search, and Symbolic Links

    Get PDF
    We present three fundamental, interrelated approaches to support multiple access paths to each terminal object in information hierarchies: faceted classification, faceted search, and web directories with embedded symbolic links. This survey aims to demonstrate how each approach supports users who seek information from multiple perspectives. We achieve this by exploring each approach, the relationships between these approaches, including tradeoffs, and how they can be used in concert, while focusing on a core set of hypermedia elements common to all. This approach provides a foundation from which to study, understand, and synthesize applications which employ these techniques. This survey does not aim to be comprehensive, but rather focuses on thematic issues

    Digital libraries for creative communities

    Get PDF
    Digital library technologies have a great deal to offer to creative, design communities. They can enable large collections of text, images, music, video and other information objects to be organised and accessed in interesting and diverse ways. Ordinary people—people not traditionally viewed as 'creators' or 'designers'—can now conceive, assemble, build, and disseminate new information collections. This paper explores the development rationale behind the Greenstone digital library technology. We also examine three examples of creative new techniques for accessing and presenting information in digital libraries and stress the importance of tailoring information access to support the requirements of the users and application area

    Parallel machine architecture and compiler design facilities

    Get PDF
    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role

    Design Features for the Social Web: The Architecture of Deme

    Full text link
    We characterize the "social Web" and argue for several features that are desirable for users of socially oriented web applications. We describe the architecture of Deme, a web content management system (WCMS) and extensible framework, and show how it implements these desired features. We then compare Deme on our desiderata with other web technologies: traditional HTML, previous open source WCMSs (illustrated by Drupal), commercial Web 2.0 applications, and open-source, object-oriented web application frameworks. The analysis suggests that a WCMS can be well suited to building social websites if it makes more of the features of object-oriented programming, such as polymorphism, and class inheritance, available to non-programmers in an accessible vocabulary.Comment: Appeared in Luis Olsina, Oscar Pastor, Daniel Schwabe, Gustavo Rossi, and Marco Winckler (Editors), Proceedings of the 8th International Workshop on Web-Oriented Software Technologies (IWWOST 2009), CEUR Workshop Proceedings, Volume 493, August 2009, pp. 40-51; 12 pages, 2 figures, 1 tabl
    corecore