46,692 research outputs found

    Towards Symbolic State Traversal for Efficient WCET Analysis of Abstract Pipeline and Cache Models

    Get PDF
    Static program analysis is a proven approach for obtaining safe and tight upper bounds on the worst-case execution time (WCET) of program tasks. It requires an analysis on the microarchitectural level, most notably pipeline and cache analysis. In our approach, the integrated pipeline and cache analysis operates on sets of possible abstract hardware states. Due to the growth of CPU complexity and the existence of timing anomalies, the analysis must handle an increasing number of possible abstract states for each program point. Symbolic methods have been proposed as a way to reduce memory consumption and improve runtime in order to keep pace with the growing hardware complexity. This paper presents the advances made since the original proposal and discusses a compact representation of abstract caches for integration with symbolic pipeline analysis

    Featherweight VeriFast

    Full text link
    VeriFast is a leading research prototype tool for the sound modular verification of safety and correctness properties of single-threaded and multithreaded C and Java programs. It has been used as a vehicle for exploration and validation of novel program verification techniques and for industrial case studies; it has served well at a number of program verification competitions; and it has been used for teaching by multiple teachers independent of the authors. However, until now, while VeriFast's operation has been described informally in a number of publications, and specific verification techniques have been formalized, a clear and precise exposition of how VeriFast works has not yet appeared. In this article we present for the first time a formal definition and soundness proof of a core subset of the VeriFast program verification approach. The exposition aims to be both accessible and rigorous: the text is based on lecture notes for a graduate course on program verification, and it is backed by an executable machine-readable definition and machine-checked soundness proof in Coq

    Badger: Complexity Analysis with Fuzzing and Symbolic Execution

    Full text link
    Hybrid testing approaches that involve fuzz testing and symbolic execution have shown promising results in achieving high code coverage, uncovering subtle errors and vulnerabilities in a variety of software applications. In this paper we describe Badger - a new hybrid approach for complexity analysis, with the goal of discovering vulnerabilities which occur when the worst-case time or space complexity of an application is significantly higher than the average case. Badger uses fuzz testing to generate a diverse set of inputs that aim to increase not only coverage but also a resource-related cost associated with each path. Since fuzzing may fail to execute deep program paths due to its limited knowledge about the conditions that influence these paths, we complement the analysis with a symbolic execution, which is also customized to search for paths that increase the resource-related cost. Symbolic execution is particularly good at generating inputs that satisfy various program conditions but by itself suffers from path explosion. Therefore, Badger uses fuzzing and symbolic execution in tandem, to leverage their benefits and overcome their weaknesses. We implemented our approach for the analysis of Java programs, based on Kelinci and Symbolic PathFinder. We evaluated Badger on Java applications, showing that our approach is significantly faster in generating worst-case executions compared to fuzzing or symbolic execution on their own

    Live Heap Space Analysis for Languages with Garbage Collection

    Get PDF
    The peak heap consumption of a program is the maximum size of the live data on the heap during the execution of the program, i.e., the minimum amount of heap space needed to run the program without exhausting the memory. It is well-known that garbage collection (GC) makes the problem of predicting the memory required to run a program difficult. This paper presents, the best of our knowledge, the first live heap space analysis for garbage-collected languages which infers accurate upper bounds on the peak heap usage of a program’s execution that are not restricted to any complexity class, i.e., we can infer exponential, logarithmic, polynomial, etc., bounds. Our analysis is developed for an (sequential) object-oriented bytecode language with a scoped-memory manager that reclaims unreachable memory when methods return. We also show how our analysis can accommodate other GC schemes which are closer to the ideal GC which collects objects as soon as they become unreachable. The practicality of our approach is experimentally evaluated on a prototype implementation.We demonstrate that it is fully automatic, reasonably accurate and efficient by inferring live heap space bounds for a standardized set of benchmarks, the JOlden suite

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Summary-based inference of quantitative bounds of live heap objects

    Get PDF
    This article presents a symbolic static analysis for computing parametric upper bounds of the number of simultaneously live objects of sequential Java-like programs. Inferring the peak amount of irreclaimable objects is the cornerstone for analyzing potential heap-memory consumption of stand-alone applications or libraries. The analysis builds method-level summaries quantifying the peak number of live objects and the number of escaping objects. Summaries are built by resorting to summaries of their callees. The usability, scalability and precision of the technique is validated by successfully predicting the object heap usage of a medium-size, real-life application which is significantly larger than other previously reported case-studies.Fil: Braberman, Victor Adrian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garbervetsky, Diego David. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hym, Samuel. Universite Lille 3; FranciaFil: Yovine, Sergio Fabian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    On Verifying Resource Contracts using Code Contracts

    Full text link
    In this paper we present an approach to check resource consumption contracts using an off-the-shelf static analyzer. We propose a set of annotations to support resource usage specifications, in particular, dynamic memory consumption constraints. Since dynamic memory may be recycled by a memory manager, the consumption of this resource is not monotone. The specification language can express both memory consumption and lifetime properties in a modular fashion. We develop a proof-of-concept implementation by extending Code Contracts' specification language. To verify the correctness of these annotations we rely on the Code Contracts static verifier and a points-to analysis. We also briefly discuss possible extensions of our approach to deal with non-linear expressions.Comment: In Proceedings LAFM 2013, arXiv:1401.056
    corecore