6,392 research outputs found

    Computational Mechanics of Molecular Systems

    Get PDF
    New Yor

    Semantic Associations between Signs and Numerical Categories in the Prefrontal Cortex

    Get PDF
    The utilization of symbols such as words and numbers as mental tools endows humans with unrivalled cognitive flexibility. In the number domain, a fundamental first step for the acquisition of numerical symbols is the semantic association of signs with cardinalities. We explored the primitives of such a semantic mapping process by recording single-cell activity in the monkey prefrontal and parietal cortices, brain structures critically involved in numerical cognition. Monkeys were trained to associate visual shapes with varying numbers of items in a matching task. After this long-term learning process, we found that the responses of many prefrontal neurons to the visual shapes reflected the associated numerical value in a behaviorally relevant way. In contrast, such association neurons were rarely found in the parietal lobe. These findings suggest a cardinal role of the prefrontal cortex in establishing semantic associations between signs and abstract categories, a cognitive precursor that may ultimately give rise to symbolic thinking in linguistic humans

    Causal information quantification of prominent dynamical features of biological neurons

    Get PDF
    Neurons tend to fire a spike when they are near a bifurcation from the resting state to spiking activity. It is a delicate balance between noise, dynamic currents and initial condition that determines the phase diagram of neural activity. Many possible ionic mechanisms can be accounted for as the source of spike generation. Moreover, the biophysics and the dynamics behind it can usually be described through a phase diagram that involves membrane voltage versus the activation variable of the ionic channel. In this paper, we present a novel methodology to characterize the dynamics of this system, which takes into account the fine temporal structures of the complex neuronal signals. This allows us to accurately distinguish the most fundamental properties of neurophysiological neurons that were previously described by Izhikevich considering the phase-space trajectory, using a time causal space: statistical complexity versus Fisher information versus Shannon entropy.Instituto de Física de Líquidos y Sistemas Biológico
    corecore