40 research outputs found

    OBDD-Based Representation of Interval Graphs

    Full text link
    A graph G=(V,E)G = (V,E) can be described by the characteristic function of the edge set χE\chi_E which maps a pair of binary encoded nodes to 1 iff the nodes are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store χE\chi_E can lead to a (hopefully) compact representation. Given the OBDD as an input, symbolic/implicit OBDD-based graph algorithms can solve optimization problems by mainly using functional operations, e.g. quantification or binary synthesis. While the OBDD representation size can not be small in general, it can be provable small for special graph classes and then also lead to fast algorithms. In this paper, we show that the OBDD size of unit interval graphs is O( V /log V )O(\ | V \ | /\log \ | V \ |) and the OBDD size of interval graphs is $O(\ | V \ | \log \ | V \ |)whichbothimproveaknownresultfromNunkesserandWoelfel(2009).Furthermore,wecanshowthatusingourvariableorderandnodelabelingforintervalgraphstheworstcaseOBDDsizeis which both improve a known result from Nunkesser and Woelfel (2009). Furthermore, we can show that using our variable order and node labeling for interval graphs the worst-case OBDD size is \Omega(\ | V \ | \log \ | V \ |).Weusethestructureoftheadjacencymatricestoprovethesebounds.Thismethodmaybeofindependentinterestandcanbeappliedtoothergraphclasses.Wealsodevelopamaximummatchingalgorithmonunitintervalgraphsusing. We use the structure of the adjacency matrices to prove these bounds. This method may be of independent interest and can be applied to other graph classes. We also develop a maximum matching algorithm on unit interval graphs using O(\log \ | V \ |)operationsandacoloringalgorithmforunitandgeneralintervalsgraphsusing operations and a coloring algorithm for unit and general intervals graphs using O(\log^2 \ | V \ |)$ operations and evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic Concepts 201

    Subject Index

    Get PDF

    Representation of graphs by OBDDs

    Get PDF
    AbstractRecently, it has been shown in a series of works that the representation of graphs by Ordered Binary Decision Diagrams (OBDDs) often leads to good algorithmic behavior. However, the question for which graph classes an OBDD representation is advantageous, has not been investigated, yet. In this paper, the space requirements for the OBDD representation of certain graph classes, specifically cographs, several types of graphs with few P4s, unit interval graphs, interval graphs and bipartite graphs are investigated. Upper and lower bounds are proven for all these graph classes and it is shown that in most (but not all) cases a representation of the graphs by OBDDs is advantageous with respect to space requirements

    A decomposed symbolic approach to reactive planning

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2003.Includes bibliographical references (p. 105-108).by Seung H. Chung.S.M

    Model Interpretability through the Lens of Computational Complexity

    Get PDF
    In spite of several claims stating that some models are more interpretable than others -- e.g., "linear models are more interpretable than deep neural networks" -- we still lack a principled notion of interpretability to formally compare among different classes of models. We make a step towards such a notion by studying whether folklore interpretability claims have a correlate in terms of computational complexity theory. We focus on local post-hoc explainability queries that, intuitively, attempt to answer why individual inputs are classified in a certain way by a given model. In a nutshell, we say that a class C1\mathcal{C}_1 of models is more interpretable than another class C2\mathcal{C}_2, if the computational complexity of answering post-hoc queries for models in C2\mathcal{C}_2 is higher than for those in C1\mathcal{C}_1. We prove that this notion provides a good theoretical counterpart to current beliefs on the interpretability of models; in particular, we show that under our definition and assuming standard complexity-theoretical assumptions (such as P\neqNP), both linear and tree-based models are strictly more interpretable than neural networks. Our complexity analysis, however, does not provide a clear-cut difference between linear and tree-based models, as we obtain different results depending on the particular post-hoc explanations considered. Finally, by applying a finer complexity analysis based on parameterized complexity, we are able to prove a theoretical result suggesting that shallow neural networks are more interpretable than deeper ones.Comment: 36 pages, including 9 pages of main text. This is the arXiv version of the NeurIPS'2020 paper. Except from minor differences that could be introduced by the publisher, the only difference should be the addition of the appendix, which contains all the proofs that do not appear in the main tex

    JINC - A Multi-Threaded Library for Higher-Order Weighted Decision Diagram Manipulation

    Get PDF
    Ordered Binary Decision Diagrams (OBDDs) have been proven to be an efficient data structure for symbolic algorithms. The efficiency of the symbolic methods de- pends on the underlying OBDD library. Available OBDD libraries are based on the standard concepts and so far only differ in implementation details. This thesis introduces new techniques to increase run-time and space-efficiency of an OBDD library. This thesis introduces the framework of Higher-Order Weighted Decision Diagrams (HOWDDs) to combine the similarities of different OBDD variants. This frame- work pioneers the basis for the new variant Toggling Algebraic Decision Diagrams (TADDs) which has been shown to be a space-efficient HOWDD variant for sym- bolic matrix representation. The concept of HOWDDs has been use to implement the OBDD library JINC. This thesis also analyzes the usage of multi-threading techniques to speed-up OBDD manipulations. A new reordering framework ap- plies the advantages of multi-threading techniques to reordering algorithms. This approach uses an abstraction layer so that the original reordering algorithms are not touched. The challenge that arise from a straight forward algorithm is that the computed-tables and the garbage collection are not as efficient as in a single- threaded environment. We resolve this problem by developing a new multi-operand APPLY algorithm that eliminates the creation of temporary nodes which could occur during computation and thus reduces the need for caching or garbage collection. The HOWDD framework leads to an efficient library design which has been shown to be more efficient than the established OBDD library CUDD. The HOWDD instance TADD reduces the needed number of nodes by factor two compared to ordinary ADDs. The new multi-threading approaches are more efficient than single-threading approaches by several factors. In the case of the new reordering framework the speed- up almost equals the theoretical optimal speed-up. The novel multi-operand APPLY algorithm reduces the memory usage for the n-queens problem by factor 50 which enables the calculation of bigger problem instances compared to the traditional APPLY approach. The new approaches improve the performance and reduce the memory footprint. This leads to the conclusion that applications should be reviewed whether they could benefit from the new multi-threading multi-operand approaches introduced and discussed in this thesis

    Knowledge compilation for online decision-making : application to the control of autonomous systems = Compilation de connaissances pour la décision en ligne : application à la conduite de systèmes autonomes

    Get PDF
    La conduite de systèmes autonomes nécessite de prendre des décisions en fonction des observations et des objectifs courants : cela implique des tâches à effectuer en ligne, avec les moyens de calcul embarqués. Cependant, il s'agit généralement de tâches combinatoires, gourmandes en temps de calcul et en espace mémoire. Réaliser ces tâches intégralement en ligne dégrade la réactivité du système ; les réaliser intégralement hors ligne, en anticipant toutes les situations possibles, nuit à son embarquabilité. Les techniques de compilation de connaissances sont susceptibles d'apporter un compromis, en déportant au maximum l'effort de calcul avant la mise en situation du système. Ces techniques consistent à traduire un problème dans un certain langage, fournissant une forme compilée de ce problème, dont la résolution est facile et la taille aussi compacte que possible. La traduction peut être très longue, mais n'est effectuée qu'une seule fois, hors ligne. Il existe de nombreux langages-cible de compilation, notamment le langage des diagrammes de décision binaires (BDDs), qui ont été utilisés avec succès dans divers domaines (model-checking, configuration, planification). L'objectif de la thèse était d'étudier l'application de la compilation de connaissances à la conduite de systèmes autonomes. Nous nous sommes intéressés à des problèmes réels de planification, qui impliquent souvent des variables continues ou à grand domaine énuméré (temps ou mémoire par exemple). Nous avons orienté notre travail vers la recherche et l'étude de langages-cible de compilation assez expressifs pour permettre de représenter de tels problèmes.Controlling autonomous systems requires to make decisions depending on current observations and objectives. This involves some tasks that must be executed online-with the embedded computational power only. However, these tasks are generally combinatory; their computation is long and requires a lot of memory space. Entirely executing them online thus compromises the system's reactivity. But entirely executing them offline, by anticipating every possible situation, can lead to a result too large to be embedded. A tradeoff can be provided by knowledge compilation techniques, which shift as much as possible of the computational effort before the system's launching. These techniques consists in a translation of a problem into some language, obtaining a compiled form of the problem, which is both easy to solve and as compact as possible. The translation step can be very long, but it is only executed once, and offline. There are numerous target compilation languages, among which the language of binary decision diagrams (BDDs), which have been successfully used in various domains of artificial intelligence, such as model-checking, configuration, or planning. The objective of the thesis was to study how knowledge compilation could be applied to the control of autonomous systems. We focused on realistic planning problems, which often involve variables with continuous domains or large enumerated domains (such as time or memory space). We oriented our work towards the search for target compilation languages expressive enough to represent such problems
    corecore