9,691 research outputs found

    From images via symbols to contexts: using augmented reality for interactive model acquisition

    Get PDF
    Systems that perform in real environments need to bind the internal state to externally perceived objects, events, or complete scenes. How to learn this correspondence has been a long standing problem in computer vision as well as artificial intelligence. Augmented Reality provides an interesting perspective on this problem because a human user can directly relate displayed system results to real environments. In the following we present a system that is able to bootstrap internal models from user-system interactions. Starting from pictorial representations it learns symbolic object labels that provide the basis for storing observed episodes. In a second step, more complex relational information is extracted from stored episodes that enables the system to react on specific scene contexts

    Structural matching by discrete relaxation

    Get PDF
    This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we locus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations ai the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter

    Fusion of monocular cues to detect man-made structures in aerial imagery

    Get PDF
    The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods

    From novice to disciplinary expert: Disciplinary identity and genre mastery

    Get PDF
    International audienceA student's emerging genre mastery is a complex process which involves learning not only relevant discoursal forms, but also a wide range of specialist knowledge frames. Recent research suggests that these knowledge frames are acquired during the development of a student's disciplinary identity. Although disciplinary identity clearly contributes to expert genre production, the relationship between the two has to date been relatively underexplored by EAP and ESP scholars. This paper presents a framework that describes how disciplinary identity may be structurally related to the specialist genres students must learn. A case study then examines how one geology student's developing disciplinary identity allowed him to gradually produce a key written genre in geology with increasing expertise. The study suggests that the specialist frames he embodied within his disciplinary identity enabled him to make increasing reference to geology's central concerns and practices, via a typified set of implicit textual cues. Expert writers use these implicit cues to situate themselves and their level of expertise with respect to their community of practice. In conclusion, it is argued that genre-based courses should also include instruction about both the target discipline's specialist knowledge frames as well as the implicit cues that help readers and writers reconstruct them

    ‘Genetic Coding’ Reconsidered : An Analysis of Actual Usage

    Get PDF
    I thank George Pandarakalam for research assistance; Hans-Jörg Rheinberger for hosting my stay at the Max Planck Institute for History of Science, Berlin; and Sahotra Sarkar and referees of this journal for offering detailed comments. Funded by the Wellcome Trust (WT098764MA).Peer reviewedPublisher PD

    Bayesian graph edit distance

    Get PDF
    This paper describes a novel framework for comparing and matching corrupted relational graphs. The paper develops the idea of edit-distance originally introduced for graph-matching by Sanfeliu and Fu [1]. We show how the Levenshtein distance can be used to model the probability distribution for structural errors in the graph-matching problem. This probability distribution is used to locate matches using MAP label updates. We compare the resulting graph-matching algorithm with that recently reported by Wilson and Hancock. The use of edit-distance offers an elegant alternative to the exhaustive compilation of label dictionaries. Moreover, the method is polynomial rather than exponential in its worst-case complexity. We support our approach with an experimental study on synthetic data and illustrate its effectiveness on an uncalibrated stereo correspondence problem. This demonstrates experimentally that the gain in efficiency is not at the expense of quality of match

    Dialectical Spaces in the Global Public Sphere: Media Memories across Generations

    Get PDF
    A decade ago, CNN and MTV emerged as new types of 'global' players, initiating and supporting a new global transnational community of 'news junkies' and music cultures from New York, to Tokyo, to Buenos Aires and Los Angeles. Today, access to international news is not only available in many countries around the world, but international channels have multiplied and created 'imagined communities' (Anderson, 1983), affecting new political alliances, conventional journalism and - increasingly - national public spheres. The following research report will discuss new issues of globalization and focus on the impact of media-related globalization processes on 'life-worlds' in various countries

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    Analysing the Creative Process through a Modelling of Tools and Methods for Composition in Hans Tutschku’s Entwurzelt

    Get PDF
    The analysis of the creative processes involved in electroacoustic music may to a large extent rely on the thorough study of the technological tools used for the realisation of a musical work, both on the composition and on the performance sides. Understanding the behaviour and potential range of aesthetic results of such tools enables the musicologist to approach the studied work much beyond its final form, as presented on tape or as performed on a particular occasion: gaining knowledge on a wider technological context leads to considering the actual artistic decisions in the perspective of the potential outcomes that the composer and performer could face but not necessarily adopt. Hence, analysing an electroacoustic work on the basis of the study of its creative context, technological tools and compositional methods may constitute a useful approach to a better understanding of its related creative processes. However, the implementation of such an approach, mainly based on the hardware or software elements used during the creation of a given work, is not straightforward. First, it implies that the considered technologies are still in use and have not be come irreversibly obsolete. In this matter, new performances of a work are good opportunities for such investigations, as they often provide a technical update and require a deep understanding of the composer’s intentions. The musicologist also needs to have access to the resources, which may not be available without a direct contact with the composer. Assuming these conditions are reached,the musicological and organological studies can encounter another issue, particularly in the digital domain: the sources are not always presented under forms that are directly readable by the analyst, for instance with a specific programming language. Despite all these possible difficulties, many cases of technological tools lean themselves to an in-depth investigation, leading to relevant conclusions on some of the creative processes appearing in the field of electroacoustic music. In the context of a common session of several analytical approaches to a same electroacoustic piece, Hans Tutschku’s Entwurzelt for six singers and electronics (2012), this article focuses on the investigation and modelling of tools and methods of the compositional stage of the realisation of the work. During a performance of Entwurzelt, the electronic materials are simply triggered as events by one of the singers, without further interactivity–thus, the essential part of the research on the electroacoustic realisation aims at exploring the processes used during the compositional stage itself. As the electronics are used as an extension of the live vocal expression by the means of harmonic amplification and complex texturing, the tools for generation and processing of both symbolic representations and audio explored. Since the software tools that constitute the primary sources for our research were not directly designed to be used beyond their creative purposes, this talk presents software modelling implemented by the two authors to demonstrate the technological context in which Tutschku could compose Entwurzelt, emphasizing his creative methods and the decisions he could make upon a wider range of possible materials and processing techniques
    • 

    corecore