10,346 research outputs found

    Symbolic Side-Channel Analysis for Probabilistic Programs

    Get PDF
    In this paper we describe symbolic side-channel analysis techniques for detecting and quantifying information leakage, given in terms of Shannon and Min Entropy. Measuring the precise leakage is challenging due to the randomness and noise often present in program executions and side-channel observations. We account for this noise by introducing additional (symbolic) program inputs which are interpreted probabilistically, using symbolic execution with parameterized model counting. We also explore an approximate sampling approach for increased scalability. In contrast to typical Monte Carlo techniques, our approach works by sampling symbolic paths, representing multiple concrete paths, and uses pruning to accelerate computation and guarantee convergence to the optimal results. The key novelty of our approach is to provide bounds on the leakage that are provably under- and over-approximating the real leakage. We implemented the techniques in the Symbolic PathFinder tool and we demonstrate them on Java programs

    Abstract Model Counting: A Novel Approach for Quantification of Information Leaks

    Get PDF
    acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10We present a novel method for Quantitative Information Flow analysis. We show how the problem of computing information leakage can be viewed as an extension of the Satisfiability Modulo Theories (SMT) problem. This view enables us to develop a framework for QIF analysis based on the framework DPLL(T) used in SMT solvers. We then show that the methodology of Symbolic Execution (SE) also fits our framework. Based on these ideas, we build two QIF analysis tools: the first one employs CBMC, a bounded model checker for ANSI C, and the second one is built on top of Symbolic PathFinder, a Symbolic Executor for Java. We use these tools to quantify leaks in industrial code such as C programs from the Linux kernel, a Java tax program from the European project HATS, and anonymity protocol

    Badger: Complexity Analysis with Fuzzing and Symbolic Execution

    Full text link
    Hybrid testing approaches that involve fuzz testing and symbolic execution have shown promising results in achieving high code coverage, uncovering subtle errors and vulnerabilities in a variety of software applications. In this paper we describe Badger - a new hybrid approach for complexity analysis, with the goal of discovering vulnerabilities which occur when the worst-case time or space complexity of an application is significantly higher than the average case. Badger uses fuzz testing to generate a diverse set of inputs that aim to increase not only coverage but also a resource-related cost associated with each path. Since fuzzing may fail to execute deep program paths due to its limited knowledge about the conditions that influence these paths, we complement the analysis with a symbolic execution, which is also customized to search for paths that increase the resource-related cost. Symbolic execution is particularly good at generating inputs that satisfy various program conditions but by itself suffers from path explosion. Therefore, Badger uses fuzzing and symbolic execution in tandem, to leverage their benefits and overcome their weaknesses. We implemented our approach for the analysis of Java programs, based on Kelinci and Symbolic PathFinder. We evaluated Badger on Java applications, showing that our approach is significantly faster in generating worst-case executions compared to fuzzing or symbolic execution on their own

    Quantifying Information Leaks Using Reliability Analysis

    Get PDF
    acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4We report on our work-in-progress into the use of reliability analysis to quantify information leaks. In recent work we have proposed a software reliability analysis technique that uses symbolic execution and model counting to quantify the probability of reaching designated program states, e.g. assert violations, under uncertainty conditions in the environment. The technique has many applications beyond reliability analysis, ranging from program understanding and debugging to analysis of cyber-physical systems. In this paper we report on a novel application of the technique, namely Quantitative Information Flow analysis (QIF). The goal of QIF is to measure information leakage of a program by using information-theoretic metrics such as Shannon entropy or Renyi entropy. We exploit the model counting engine of the reliability analyzer over symbolic program paths, to compute an upper bound of the maximum leakage over all possible distributions of the confidential data. We have implemented our approach into a prototype tool, called QILURA, and explore its effectiveness on a number of case studie

    Statistical Model Checking of e-Motions Domain-Specific Modeling Languages

    Get PDF
    Domain experts may use novel tools that allow them to de- sign and model their systems in a notation very close to the domain problem. However, the use of tools for the statistical analysis of stochas- tic systems requires software engineers to carefully specify such systems in low level and specific languages. In this work we line up both sce- narios, specific domain modeling and statistical analysis. Specifically, we have extended the e-Motions system, a framework to develop real-time domain-specific languages where the behavior is specified in a natural way by in-place transformation rules, to support the statistical analysis of systems defined using it. We discuss how restricted e-Motions sys- tems are used to produce Maude corresponding specifications, using a model transformation from e-Motions to Maude, which comply with the restrictions of the VeStA tool, and which can therefore be used to per- form statistical analysis on the stochastic systems thus generated. We illustrate our approach with a very simple messaging distributed system.Universidad de Málaga Campus de Excelencia Internacional Andalucía Tech. Research Project TIN2014-52034-R an

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Relational Symbolic Execution

    Full text link
    Symbolic execution is a classical program analysis technique used to show that programs satisfy or violate given specifications. In this work we generalize symbolic execution to support program analysis for relational specifications in the form of relational properties - these are properties about two runs of two programs on related inputs, or about two executions of a single program on related inputs. Relational properties are useful to formalize notions in security and privacy, and to reason about program optimizations. We design a relational symbolic execution engine, named RelSym which supports interactive refutation, as well as proving of relational properties for programs written in a language with arrays and for-like loops

    Quantifying Timing Leaks and Cost Optimisation

    Full text link
    We develop a new notion of security against timing attacks where the attacker is able to simultaneously observe the execution time of a program and the probability of the values of low variables. We then show how to measure the security of a program with respect to this notion via a computable estimate of the timing leakage and use this estimate for cost optimisation.Comment: 16 pages, 2 figures, 4 tables. A shorter version is included in the proceedings of ICICS'08 - 10th International Conference on Information and Communications Security, 20-22 October, 2008 Birmingham, U
    • …
    corecore