1,034 research outputs found

    High-level Cryptographic Abstractions

    Full text link
    The interfaces exposed by commonly used cryptographic libraries are clumsy, complicated, and assume an understanding of cryptographic algorithms. The challenge is to design high-level abstractions that require minimum knowledge and effort to use while also allowing maximum control when needed. This paper proposes such high-level abstractions consisting of simple cryptographic primitives and full declarative configuration. These abstractions can be implemented on top of any cryptographic library in any language. We have implemented these abstractions in Python, and used them to write a wide variety of well-known security protocols, including Signal, Kerberos, and TLS. We show that programs using our abstractions are much smaller and easier to write than using low-level libraries, where size of security protocols implemented is reduced by about a third on average. We show our implementation incurs a small overhead, less than 5 microseconds for shared key operations and less than 341 microseconds (< 1%) for public key operations. We also show our abstractions are safe against main types of cryptographic misuse reported in the literature

    EasyUC: using EasyCrypt to mechanize proofs of universally composable security

    Get PDF
    We present a methodology for using the EasyCrypt proof assistant (originally designed for mechanizing the generation of proofs of game-based security of cryptographic schemes and protocols) to mechanize proofs of security of cryptographic protocols within the universally composable (UC) security framework. This allows, for the first time, the mechanization and formal verification of the entire sequence of steps needed for proving simulation-based security in a modular way: Specifying a protocol and the desired ideal functionality; Constructing a simulator and demonstrating its validity, via reduction to hard computational problems; Invoking the universal composition operation and demonstrating that it indeed preserves security. We demonstrate our methodology on a simple example: stating and proving the security of secure message communication via a one-time pad, where the key comes from a Diffie-Hellman key-exchange, assuming ideally authenticated communication. We first put together EasyCrypt-verified proofs that: (a) the Diffie-Hellman protocol UC-realizes an ideal key-exchange functionality, assuming hardness of the Decisional Diffie-Hellman problem, and (b) one-time-pad encryption, with a key obtained using ideal key-exchange, UC-realizes an ideal secure-communication functionality. We then mechanically combine the two proofs into an EasyCrypt-verified proof that the composed protocol realizes the same ideal secure-communication functionality. Although formulating a methodology that is both sound and workable has proven to be a complex task, we are hopeful that it will prove to be the basis for mechanized UC security analyses for significantly more complex protocols and tasks.Accepted manuscrip

    Group theory in cryptography

    Full text link
    This paper is a guide for the pure mathematician who would like to know more about cryptography based on group theory. The paper gives a brief overview of the subject, and provides pointers to good textbooks, key research papers and recent survey papers in the area.Comment: 25 pages References updated, and a few extra references added. Minor typographical changes. To appear in Proceedings of Groups St Andrews 2009 in Bath, U

    Diffie-Hellman without Difficulty (Extended Version)

    Get PDF
    • …
    corecore