60,970 research outputs found

    Elite Bases Regression: A Real-time Algorithm for Symbolic Regression

    Full text link
    Symbolic regression is an important but challenging research topic in data mining. It can detect the underlying mathematical models. Genetic programming (GP) is one of the most popular methods for symbolic regression. However, its convergence speed might be too slow for large scale problems with a large number of variables. This drawback has become a bottleneck in practical applications. In this paper, a new non-evolutionary real-time algorithm for symbolic regression, Elite Bases Regression (EBR), is proposed. EBR generates a set of candidate basis functions coded with parse-matrix in specific mapping rules. Meanwhile, a certain number of elite bases are preserved and updated iteratively according to the correlation coefficients with respect to the target model. The regression model is then spanned by the elite bases. A comparative study between EBR and a recent proposed machine learning method for symbolic regression, Fast Function eXtraction (FFX), are conducted. Numerical results indicate that EBR can solve symbolic regression problems more effectively.Comment: The 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2017

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page

    Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

    Get PDF
    The ongoing hardware evolution exhibits an escalation in the number, as well as in the heterogeneity, of computing resources. The pressure to maintain reasonable levels of performance and portability forces application developers to leave the traditional programming paradigms and explore alternative solutions. PaStiX is a parallel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore architectures. In this paper, we study the benefits and limits of replacing the highly specialized internal scheduler of the PaStiX solver with two generic runtime systems: PaRSEC and StarPU. The tasks graph of the factorization step is made available to the two runtimes, providing them the opportunity to process and optimize its traversal in order to maximize the algorithm efficiency for the targeted hardware platform. A comparative study of the performance of the PaStiX solver on top of its native internal scheduler, PaRSEC, and StarPU frameworks, on different execution environments, is performed. The analysis highlights that these generic task-based runtimes achieve comparable results to the application-optimized embedded scheduler on homogeneous platforms. Furthermore, they are able to significantly speed up the solver on heterogeneous environments by taking advantage of the accelerators while hiding the complexity of their efficient manipulation from the programmer.Comment: Heterogeneity in Computing Workshop (2014

    Inference of termination conditions for numerical loops in Prolog

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows overcoming these difficulties. Our approach is based on transforming a program in a way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows us to perform a correct analysis of such computations automatically, by extending previous work on a constraint-based approach to termination. Finally, we discuss possible extensions of the technique, including incorporating general term orderings.Comment: To appear in Theory and Practice of Logic Programming. To appear in Theory and Practice of Logic Programmin

    Finding polynomial loop invariants for probabilistic programs

    Full text link
    Quantitative loop invariants are an essential element in the verification of probabilistic programs. Recently, multivariate Lagrange interpolation has been applied to synthesizing polynomial invariants. In this paper, we propose an alternative approach. First, we fix a polynomial template as a candidate of a loop invariant. Using Stengle's Positivstellensatz and a transformation to a sum-of-squares problem, we find sufficient conditions on the coefficients. Then, we solve a semidefinite programming feasibility problem to synthesize the loop invariants. If the semidefinite program is unfeasible, we backtrack after increasing the degree of the template. Our approach is semi-complete in the sense that it will always lead us to a feasible solution if one exists and numerical errors are small. Experimental results show the efficiency of our approach.Comment: accompanies an ATVA 2017 submissio

    ILP Modulo Data

    Get PDF
    The vast quantity of data generated and captured every day has led to a pressing need for tools and processes to organize, analyze and interrelate this data. Automated reasoning and optimization tools with inherent support for data could enable advancements in a variety of contexts, from data-backed decision making to data-intensive scientific research. To this end, we introduce a decidable logic aimed at database analysis. Our logic extends quantifier-free Linear Integer Arithmetic with operators from Relational Algebra, like selection and cross product. We provide a scalable decision procedure that is based on the BC(T) architecture for ILP Modulo Theories. Our decision procedure makes use of database techniques. We also experimentally evaluate our approach, and discuss potential applications.Comment: FMCAD 2014 final version plus proof
    corecore