116 research outputs found

    Symbolic Priors for RNN-based Semantic Parsing

    Get PDF
    International audienceSeq2seq models based on Recurrent Neural Networks (RNNs) have recently received a lot of attention in the domain of Semantic Parsing. While in principle they can be trained directly on pairs (natural language utterances, logical forms), their performance is limited by the amount of available data. To alleviate this problem, we propose to exploit various sources of prior knowledge: the well-formedness of the logical forms is modeled by a weighted context-free grammar; the likelihood that certain entities present in the input utterance are also present in the logical form is modeled by weighted finite-state automata. The grammar and automata are combined together through an efficient intersection algorithm to form a soft guide (" background ") to the RNN. We test our method on an extension of the Overnight dataset and show that it not only strongly improves over an RNN base-line, but also outperforms non-RNN models based on rich sets of hand-crafted features

    ASTormer: An AST Structure-aware Transformer Decoder for Text-to-SQL

    Full text link
    Text-to-SQL aims to generate an executable SQL program given the user utterance and the corresponding database schema. To ensure the well-formedness of output SQLs, one prominent approach adopts a grammar-based recurrent decoder to produce the equivalent SQL abstract syntax tree (AST). However, previous methods mainly utilize an RNN-series decoder, which 1) is time-consuming and inefficient and 2) introduces very few structure priors. In this work, we propose an AST structure-aware Transformer decoder (ASTormer) to replace traditional RNN cells. The structural knowledge, such as node types and positions in the tree, is seamlessly incorporated into the decoder via both absolute and relative position embeddings. Besides, the proposed framework is compatible with different traversing orders even considering adaptive node selection. Extensive experiments on five text-to-SQL benchmarks demonstrate the effectiveness and efficiency of our structured decoder compared to competitive baselines

    Improving exploration in policy gradient search: Application to symbolic optimization

    Full text link
    Many machine learning strategies designed to automate mathematical tasks leverage neural networks to search large combinatorial spaces of mathematical symbols. In contrast to traditional evolutionary approaches, using a neural network at the core of the search allows learning higher-level symbolic patterns, providing an informed direction to guide the search. When no labeled data is available, such networks can still be trained using reinforcement learning. However, we demonstrate that this approach can suffer from an early commitment phenomenon and from initialization bias, both of which limit exploration. We present two exploration methods to tackle these issues, building upon ideas of entropy regularization and distribution initialization. We show that these techniques can improve the performance, increase sample efficiency, and lower the complexity of solutions for the task of symbolic regression.Comment: Published in 1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 202

    Scene Graph Generation with External Knowledge and Image Reconstruction

    Full text link
    Scene graph generation has received growing attention with the advancements in image understanding tasks such as object detection, attributes and relationship prediction,~\etc. However, existing datasets are biased in terms of object and relationship labels, or often come with noisy and missing annotations, which makes the development of a reliable scene graph prediction model very challenging. In this paper, we propose a novel scene graph generation algorithm with external knowledge and image reconstruction loss to overcome these dataset issues. In particular, we extract commonsense knowledge from the external knowledge base to refine object and phrase features for improving generalizability in scene graph generation. To address the bias of noisy object annotations, we introduce an auxiliary image reconstruction path to regularize the scene graph generation network. Extensive experiments show that our framework can generate better scene graphs, achieving the state-of-the-art performance on two benchmark datasets: Visual Relationship Detection and Visual Genome datasets.Comment: 10 pages, 5 figures, Accepted in CVPR 201
    corecore