5,291 research outputs found

    Features for the classification and clustering of music in symbolic format

    Get PDF
    Tese de mestrado, Engenharia Informática, Universidade de Lisboa, Faculdade de Ciências, 2008Este documento descreve o trabalho realizado no âmbito da disciplina de Projecto em Engenharia Informática do Mestrado em Engenharia Informática da Faculdade de Ciências da Universidade de Lisboa. Recuperação de Informação Musical é, hoje em dia, um ramo altamente activo de investigação e desenvolvimento na área de ciência da computação, e incide em diversos tópicos, incluindo a classificação musical por géneros. O trabalho apresentado centra-se na Classificação de Pistas e de Géneros de música armazenada usando o formato MIDI. Para resolver o problema da classificação de pistas MIDI, extraimos um conjunto de descritores que são usados para treinar um classificador implementado através de uma técnica de Máquinas de Aprendizagem, Redes Neuronais, com base nas notas, e durações destas, que descrevem cada faixa. As faixas são classificadas em seis categorias: Melody (Melodia), Harmony (Harmonia), Bass (Baixo) e Drums (Bateria). Para caracterizar o conteúdo musical de cada faixa, um vector de descritores numérico, normalmente conhecido como ”shallow structure description”, é extraído. Em seguida, eles são utilizados no classificador — Neural Network — que foi implementado no ambiente Matlab. Na Classificação por Géneros, duas propostas foram usadas: Modelação de Linguagem, na qual uma matriz de transição de probabilidades é criada para cada tipo de pista midi (Melodia, Harmonia, Baixo e Bateria) e também para cada género; e Redes Neuronais, em que um vector de descritores numéricos é extraído de cada pista, e é processado num Classificador baseado numa Rede Neuronal. Seis Colectâneas de Musica no formato Midi, de seis géneros diferentes, Blues, Country, Jazz, Metal, Punk e Rock, foram formadas para efectuar as experiências. Estes géneros foram escolhidos por partilharem os mesmos instrumentos, na sua maioria, como por exemplo, baixo, bateria, piano ou guitarra. Estes géneros também partilham algumas características entre si, para que a classificação não seja trivial, e para que a robustez dos classificadores seja testada. As experiências de Classificação de Pistas Midi, nas quais foram testados, numa primeira abordagem, todos os descritores, e numa segunda abordagem, os melhores descritores, mostrando que o uso de todos os descritores é uma abordagem errada, uma vez que existem descritores que confundem o classificador. Provou-se que a melhor maneira, neste contexto, de se classificar estas faixas MIDI é utilizar descritores cuidadosamente seleccionados. As experiências de Classificação por Géneros, mostraram que os Classificadores por Instrumentos (Single-Instrument) obtiveram os melhores resultados. Quatro géneros, Jazz, Country, Metal e Punk, obtiveram resultados de classificação com sucesso acima dos 80% O trabalho futuro inclui: algoritmos genéticos para a selecção de melhores descritores; estruturar pistas e musicas; fundir todos os classificadores desenvolvidos num único classificador.This document describes the work carried out under the discipline of Computing Engineering Project of the Computer Engineering Master, Sciences Faculty of the Lisbon University. Music Information Retrieval is, nowadays, a highly active branch of research and development in the computer science field, and focuses several topics, including music genre classification. The work presented in this paper focus on Track and Genre Classification of music stored using MIDI format, To address the problem of MIDI track classification, we extract a set of descriptors that are used to train a classifier implemented by a Neural Network, based on the pitch levels and durations that describe each track. Tracks are classified into four classes: Melody, Harmony, Bass and Drums. In order to characterize the musical content from each track, a vector of numeric descriptors, normally known as shallow structure description, is extracted. Then they are used as inputs for the classifier which was implemented in the Matlab environment. In the Genre Classification task, two approaches are used: Language Modeling, in which a transition probabilities matrix is created for each type of track (Melody, Harmony, Bass and Drums) and also for each genre; and an approach based on Neural Networks, where a vector of numeric descriptors is extracted from each track (Melody, Harmony, Bass and Drums) and fed to a Neural Network Classifier. Six MIDI Music Corpora were assembled for the experiments, from six different genres, Blues, Country, Jazz, Metal, Punk and Rock. These genres were selected because all of them have the same base instruments, such as bass, drums, piano or guitar. Also, the genres chosen share some characteristics between them, so that the classification isn’t trivial, and tests the classifiers robustness. Track Classification experiments using all descriptors and best descriptors were made, showing that using all descriptors is a wrong approach, as there are descriptors which confuse the classifier. Using carefully selected descriptors proved to be the best way to classify these MIDI tracks. Genre Classification experiments showed that the Single-Instrument Classifiers achieved the best results. Four genres achieved higher than 80% success rates: Jazz, Country, Metal and Punk. Future work includes: genetic algorithms; structurize tracks and songs; merge all presented classifiers into one full Automatic Genre Classification System

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Neural activity classification with machine learning models trained on interspike interval series data

    Full text link
    The flow of information through the brain is reflected by the activity patterns of neural cells. Indeed, these firing patterns are widely used as input data to predictive models that relate stimuli and animal behavior to the activity of a population of neurons. However, relatively little attention was paid to single neuron spike trains as predictors of cell or network properties in the brain. In this work, we introduce an approach to neuronal spike train data mining which enables effective classification and clustering of neuron types and network activity states based on single-cell spiking patterns. This approach is centered around applying state-of-the-art time series classification/clustering methods to sequences of interspike intervals recorded from single neurons. We demonstrate good performance of these methods in tasks involving classification of neuron type (e.g. excitatory vs. inhibitory cells) and/or neural circuit activity state (e.g. awake vs. REM sleep vs. nonREM sleep states) on an open-access cortical spiking activity dataset

    k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples)

    Get PDF
    Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier -- classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance because issues of poor run-time performance is not such a problem these days with the computational power that is available. This paper presents an overview of techniques for Nearest Neighbour classification focusing on; mechanisms for assessing similarity (distance), computational issues in identifying nearest neighbours and mechanisms for reducing the dimension of the data. This paper is the second edition of a paper previously published as a technical report. Sections on similarity measures for time-series, retrieval speed-up and intrinsic dimensionality have been added. An Appendix is included providing access to Python code for the key methods.Comment: 22 pages, 15 figures: An updated edition of an older tutorial on kN

    A Clustering-Based Algorithm for Data Reduction

    Get PDF
    Finding an efficient data reduction method for large-scale problems is an imperative task. In this paper, we propose a similarity-based self-constructing fuzzy clustering algorithm to do the sampling of instances for the classification task. Instances that are similar to each other are grouped into the same cluster. When all the instances have been fed in, a number of clusters are formed automatically. Then the statistical mean for each cluster will be regarded as representing all the instances covered in the cluster. This approach has two advantages. One is that it can be faster and uses less storage memory. The other is that the number of new representative instances need not be specified in advance by the user. Experiments on real-world datasets show that our method can run faster and obtain better reduction rate than other methods
    corecore