18,546 research outputs found

    A Verified Information-Flow Architecture

    Get PDF
    SAFE is a clean-slate design for a highly secure computer system, with pervasive mechanisms for tracking and limiting information flows. At the lowest level, the SAFE hardware supports fine-grained programmable tags, with efficient and flexible propagation and combination of tags as instructions are executed. The operating system virtualizes these generic facilities to present an information-flow abstract machine that allows user programs to label sensitive data with rich confidentiality policies. We present a formal, machine-checked model of the key hardware and software mechanisms used to dynamically control information flow in SAFE and an end-to-end proof of noninterference for this model. We use a refinement proof methodology to propagate the noninterference property of the abstract machine down to the concrete machine level. We use an intermediate layer in the refinement chain that factors out the details of the information-flow control policy and devise a code generator for compiling such information-flow policies into low-level monitor code. Finally, we verify the correctness of this generator using a dedicated Hoare logic that abstracts from low-level machine instructions into a reusable set of verified structured code generators

    CTGEN - a Unit Test Generator for C

    Full text link
    We present a new unit test generator for C code, CTGEN. It generates test data for C1 structural coverage and functional coverage based on pre-/post-condition specifications or internal assertions. The generator supports automated stub generation, and data to be returned by the stub to the unit under test (UUT) may be specified by means of constraints. The typical application field for CTGEN is embedded systems testing; therefore the tool can cope with the typical aliasing problems present in low-level C, including pointer arithmetics, structures and unions. CTGEN creates complete test procedures which are ready to be compiled and run against the UUT. In this paper we describe the main features of CTGEN, their technical realisation, and we elaborate on its performance in comparison to a list of competing test generation tools. Since 2011, CTGEN is used in industrial scale test campaigns for embedded systems code in the automotive domain.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Rethinking Pointer Reasoning in Symbolic Execution

    Get PDF
    Symbolic execution is a popular program analysis technique that allows seeking for bugs by reasoning over multiple alternative execution states at once. As the number of states to explore may grow exponentially, a symbolic executor may quickly run out of space. For instance, a memory access to a symbolic address may potentially reference the entire address space, leading to a combinatorial explosion of the possible resulting execution states. To cope with this issue, state-of-the-art executors concretize symbolic addresses that span memory intervals larger than some threshold. Unfortunately, this could result in missing interesting execution states, e.g., where a bug arises. In this paper we introduce MemSight, a new approach to symbolic memory that reduces the need for concretization, hence offering the opportunity for broader state explorations and more precise pointer reasoning. Rather than mapping address instances to data as previous tools do, our technique maps symbolic address expressions to data, maintaining the possible alternative states resulting from the memory referenced by a symbolic address in a compact, implicit form. A preliminary experimental investigation on prominent benchmarks from the DARPA Cyber Grand Challenge shows that MemSight enables the exploration of states unreachable by previous techniques

    Context-bounded model checking with ESBMC 1.17

    No full text
    ESBMC is a context-bounded symbolic model checker that allows the verification of single- and multi-threaded C code with shared variables and locks. ESBMC supports full ANSI-C, and can verify programs that make use of bit-level operations, arrays, pointers, structs, unions, memory allocation and foating-point arithmetic. It can reason about arithmetic under- and overflows, pointer safety, memory leaks, array bounds violations, atomicity and order violations, local and global deadlocks, data races, and user-specified assertions. However, as other bounded model checkers, ESBMC is in general incomplete

    An empirical investigation into branch coverage for C programs using CUTE and AUSTIN

    Get PDF
    Automated test data generation has remained a topic of considerable interest for several decades because it lies at the heart of attempts to automate the process of Software Testing. This paper reports the results of an empirical study using the dynamic symbolic-execution tool. CUTE, and a search based tool, AUSTIN on five non-trivial open source applications. The aim is to provide practitioners with an assessment of what can be achieved by existing techniques with little or no specialist knowledge and to provide researchers with baseline data against which to measure subsequent work. To achieve this, each tool is applied 'as is', with neither additional tuning nor supporting harnesses and with no adjustments applied to the subject programs under test. The mere fact that these tools can be applied 'out of the box' in this manner reflects the growing maturity of Automated test data generation. However, as might be expected, the study reveals opportunities for improvement and suggests ways to hybridize these two approaches that have hitherto been developed entirely independently. (C) 2010 Elsevier Inc. All rights reserved

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    SmartUnit: Empirical Evaluations for Automated Unit Testing of Embedded Software in Industry

    Full text link
    In this paper, we aim at the automated unit coverage-based testing for embedded software. To achieve the goal, by analyzing the industrial requirements and our previous work on automated unit testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the engineering requirements that take place in our partner companies. SmartUnit is a dynamic symbolic execution implementation, which supports statement, branch, boundary value and MC/DC coverage. SmartUnit has been used to test more than one million lines of code in real projects. For confidentiality motives, we select three in-house real projects for the empirical evaluations. We also carry out our evaluations on two open source database projects, SQLite and PostgreSQL, to test the scalability of our tool since the scale of the embedded software project is mostly not large, 5K-50K lines of code on average. From our experimental results, in general, more than 90% of functions in commercial embedded software achieve 100% statement, branch, MC/DC coverage, more than 80% of functions in SQLite achieve 100% MC/DC coverage, and more than 60% of functions in PostgreSQL achieve 100% MC/DC coverage. Moreover, SmartUnit is able to find the runtime exceptions at the unit testing level. We also have reported exceptions like array index out of bounds and divided-by-zero in SQLite. Furthermore, we analyze the reasons of low coverage in automated unit testing in our setting and give a survey on the situation of manual unit testing with respect to automated unit testing in industry.Comment: In Proceedings of 40th International Conference on Software Engineering: Software Engineering in Practice Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEIP '18), 10 page
    • …
    corecore