36,168 research outputs found

    Automatic Test Generation for Space

    Get PDF
    The European Space Agency (ESA) uses an engine to perform tests in the Ground Segment infrastructure, specially the Operational Simulator. This engine uses many different tools to ensure the development of regression testing infrastructure and these tests perform black-box testing to the C++ simulator implementation. VST (VisionSpace Technologies) is one of the companies that provides these services to ESA and they need a tool to infer automatically tests from the existing C++ code, instead of writing manually scripts to perform tests. With this motivation in mind, this paper explores automatic testing approaches and tools in order to propose a system that satisfies VST needs

    Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function Pairs

    Full text link
    Binary code analysis allows analyzing binary code without having access to the corresponding source code. A binary, after disassembly, is expressed in an assembly language. This inspires us to approach binary analysis by leveraging ideas and techniques from Natural Language Processing (NLP), a rich area focused on processing text of various natural languages. We notice that binary code analysis and NLP share a lot of analogical topics, such as semantics extraction, summarization, and classification. This work utilizes these ideas to address two important code similarity comparison problems. (I) Given a pair of basic blocks for different instruction set architectures (ISAs), determining whether their semantics is similar or not; and (II) given a piece of code of interest, determining if it is contained in another piece of assembly code for a different ISA. The solutions to these two problems have many applications, such as cross-architecture vulnerability discovery and code plagiarism detection. We implement a prototype system INNEREYE and perform a comprehensive evaluation. A comparison between our approach and existing approaches to Problem I shows that our system outperforms them in terms of accuracy, efficiency and scalability. And the case studies utilizing the system demonstrate that our solution to Problem II is effective. Moreover, this research showcases how to apply ideas and techniques from NLP to large-scale binary code analysis.Comment: Accepted by Network and Distributed Systems Security (NDSS) Symposium 201

    CTGEN - a Unit Test Generator for C

    Full text link
    We present a new unit test generator for C code, CTGEN. It generates test data for C1 structural coverage and functional coverage based on pre-/post-condition specifications or internal assertions. The generator supports automated stub generation, and data to be returned by the stub to the unit under test (UUT) may be specified by means of constraints. The typical application field for CTGEN is embedded systems testing; therefore the tool can cope with the typical aliasing problems present in low-level C, including pointer arithmetics, structures and unions. CTGEN creates complete test procedures which are ready to be compiled and run against the UUT. In this paper we describe the main features of CTGEN, their technical realisation, and we elaborate on its performance in comparison to a list of competing test generation tools. Since 2011, CTGEN is used in industrial scale test campaigns for embedded systems code in the automotive domain.Comment: In Proceedings SSV 2012, arXiv:1211.587

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Linking Unit Tests and Properties

    Get PDF
    QuickCheck allows us to verify software against particular proper- ties. A property can be regarded as an abstraction over many unit tests. QuickCheck uses generated random input data to test such properties. If a counterexample is found, it becomes immediately clear what we have tested. This is not the case when all tests pass, since we do not (and shall not) see the actual generated test cases. How can we be sure about what is tested? QuickCheck has the ability to gather statistics about the test cases, which is insightful. But still it does not tell us whether the particular unit test scenarios we have in mind are included. For this reason, we have developed a tool that can answer this question. It checks if a given unit test can be generated by a property, making it easier to judge the property’s quality. We have applied our tool to an industrial use case of testing the AUTOSAR basic software modules and shows that it can handle complex models and large unit tests
    • …
    corecore