1,379 research outputs found

    Algorithmic Integrability Tests for Nonlinear Differential and Lattice Equations

    Full text link
    Three symbolic algorithms for testing the integrability of polynomial systems of partial differential and differential-difference equations are presented. The first algorithm is the well-known Painlev\'e test, which is applicable to polynomial systems of ordinary and partial differential equations. The second and third algorithms allow one to explicitly compute polynomial conserved densities and higher-order symmetries of nonlinear evolution and lattice equations. The first algorithm is implemented in the symbolic syntax of both Macsyma and Mathematica. The second and third algorithms are available in Mathematica. The codes can be used for computer-aided integrability testing of nonlinear differential and lattice equations as they occur in various branches of the sciences and engineering. Applied to systems with parameters, the codes can determine the conditions on the parameters so that the systems pass the Painlev\'e test, or admit a sequence of conserved densities or higher-order symmetries.Comment: Submitted to: Computer Physics Communications, Latex, uses the style files elsart.sty and elsart12.st

    Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions

    Get PDF
    A method for symbolically computing conservation laws of nonlinear partial differential equations (PDEs) in multiple space dimensions is presented in the language of variational calculus and linear algebra. The steps of the method are illustrated using the Zakharov-Kuznetsov and Kadomtsev-Petviashvili equations as examples. The method is algorithmic and has been implemented in Mathematica. The software package, ConservationLawsMD.m, can be used to symbolically compute and test conservation laws for polynomial PDEs that can be written as nonlinear evolution equations. The code ConservationLawsMD.m has been applied to (2+1)-dimensional versions of the Sawada-Kotera, Camassa-Holm, and Gardner equations, and the multi-dimensional Khokhlov-Zabolotskaya equation.Comment: 26 pages. Paper will appear in Journal of Symbolic Computation (2011). Presented at the Special Session on Geometric Flows, Moving Frames and Integrable Systems, 2010 Spring Central Sectional Meeting of the American Mathematical Society, Macalester College, St. Paul, Minnesota, April 10, 201

    Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multi-dimensions

    Full text link
    A direct method for the computation of polynomial conservation laws of polynomial systems of nonlinear partial differential equations (PDEs) in multi-dimensions is presented. The method avoids advanced differential-geometric tools. Instead, it is solely based on calculus, variational calculus, and linear algebra. Densities are constructed as linear combinations of scaling homogeneous terms with undetermined coefficients. The variational derivative (Euler operator) is used to compute the undetermined coefficients. The homotopy operator is used to compute the fluxes. The method is illustrated with nonlinear PDEs describing wave phenomena in fluid dynamics, plasma physics, and quantum physics. For PDEs with parameters, the method determines the conditions on the parameters so that a sequence of conserved densities might exist. The existence of a large number of conservation laws is a predictor for complete integrability. The method is algorithmic, applicable to a variety of PDEs, and can be implemented in computer algebra systems such as Mathematica, Maple, and REDUCE.Comment: To appear in: Thematic Issue on ``Mathematical Methods and Symbolic Calculation in Chemistry and Chemical Biology'' of the International Journal of Quantum Chemistry. Eds.: Michael Barnett and Frank Harris (2006

    Symbolic algorithms for the Painlevé test, special solutions, and recursion operators for nonlinear PDEs

    Get PDF
    This paper discusses the algorithms and implementations of three MATHEMATICA packages for the study of integrability and the computation of closed-form solutions of nonlinear polynomial PDEs. The first package, PainleveTest.m, symbolically performs the Painlevé integrability test. The second package, PDESpecialSolutions.m, computes exact solutions expressible in hyperbolic or elliptic functions. The third package, PDERecursionOperator.m, generates and tests recursion operators
    corecore