9,862 research outputs found

    On central tendency and dispersion measures for intervals and hypercubes

    Get PDF
    The uncertainty or the variability of the data may be treated by considering, rather than a single value for each data, the interval of values in which it may fall. This paper studies the derivation of basic description statistics for interval-valued datasets. We propose a geometrical approach in the determination of summary statistics (central tendency and dispersion measures) for interval-valued variables

    Basic statistics for probabilistic symbolic variables: a novel metric-based approach

    Full text link
    In data mining, it is usually to describe a set of individuals using some summaries (means, standard deviations, histograms, confidence intervals) that generalize individual descriptions into a typology description. In this case, data can be described by several values. In this paper, we propose an approach for computing basic statics for such data, and, in particular, for data described by numerical multi-valued variables (interval, histograms, discrete multi-valued descriptions). We propose to treat all numerical multi-valued variables as distributional data, i.e. as individuals described by distributions. To obtain new basic statistics for measuring the variability and the association between such variables, we extend the classic measure of inertia, calculated with the Euclidean distance, using the squared Wasserstein distance defined between probability measures. The distance is a generalization of the Wasserstein distance, that is a distance between quantile functions of two distributions. Some properties of such a distance are shown. Among them, we prove the Huygens theorem of decomposition of the inertia. We show the use of the Wasserstein distance and of the basic statistics presenting a k-means like clustering algorithm, for the clustering of a set of data described by modal numerical variables (distributional variables), on a real data set. Keywords: Wasserstein distance, inertia, dependence, distributional data, modal variables.Comment: 19 pages, 3 figure

    Linear regression for numeric symbolic variables: an ordinary least squares approach based on Wasserstein Distance

    Full text link
    In this paper we present a linear regression model for modal symbolic data. The observed variables are histogram variables according to the definition given in the framework of Symbolic Data Analysis and the parameters of the model are estimated using the classic Least Squares method. An appropriate metric is introduced in order to measure the error between the observed and the predicted distributions. In particular, the Wasserstein distance is proposed. Some properties of such metric are exploited to predict the response variable as direct linear combination of other independent histogram variables. Measures of goodness of fit are discussed. An application on real data corroborates the proposed method

    Measure based metrics for aggregated data

    Get PDF
    Aggregated data arises commonly from surveys and censuses where groups of individuals are studied as coherent entities. The aggregated data can take many forms including sets, intervals, distributions and histograms. The data analyst needs to measure the similarity between such aggregated data items and a range of metrics are reported in the literature to achieve this (e.g. the Jaccard metric for sets and the Wasserstein metric for histograms). In this paper, a unifying theory based on measure theory is developed that establishes not only that known metrics are essentially similar but also suggests new metrics
    • …
    corecore