463 research outputs found

    Eddy current defect response analysis using sum of Gaussian methods

    Get PDF
    This dissertation is a study of methods to automatedly detect and produce approximations of eddy current differential coil defect signatures in terms of a summed collection of Gaussian functions (SoG). Datasets consisting of varying material, defect size, inspection frequency, and coil diameter were investigated. Dimensionally reduced representations of the defect responses were obtained utilizing common existing reduction methods and novel enhancements to them utilizing SoG Representations. Efficacy of the SoG enhanced representations were studied utilizing common Machine Learning (ML) interpretable classifier designs with the SoG representations indicating significant improvement of common analysis metrics

    Structure and representation of ecological data to support knowledge discovery: A case study with bioacoustic data

    Get PDF
    Bird communities have long been surveyed as key indicators of ecosystem health and biodiversity. Adoption of Autonomous Recording Units (ARUs) to perform avian surveys has shifted the burden of species recognition from “birders” in the field, to “listeners” who review the ARU recordings at a later time. The number of recordings ARUs can produce has created a need to process large amounts of data. Although much research is devoted to fully automating the recognition process, expert humans are still required when entire bird communities must be identified. A framework for a Decision Support System (DSS) is presented which would assist listeners by suggesting likely species. A unique feature of the DSS is the consideration of the recording “context” of time, location and habitat as well as the bioacoustic features to match unknown vocalizations with reference species. In this thesis a data warehouse was built for an existing set of bioacoustic research data as a first–step to creating the DSS. The data set was from ARU deployments in the Lower Athabasca Region of Alberta, Canada. The Knowledge Discovery in Databases (KDD) and Dimensional Design Process protocols were used as guides to build a Kimball–style data warehouse. Data housed in the data warehouse included field data, data derived from GIS analysis, fuzzy logic memberships and symbolic representation of bioacoustic recording using the Piecewise Aggregate Approximation and Symbolic Aggregate approXimation (PAA/SAX). Examples of how missing and erroneous data were detected and processed are given. The sources of uncertainty inherent in ecological data are discussed and fuzzy logic is demonstrated as a soft–computing technique to accommodate this data. Data warehouses are commonly used for business applications but are very applicable for ecological data. As most instructions on building data warehouse are for business data, this thesis is offered as an example for ecologists interested in moving their data to a data warehouse. This thesis presents a case–study of how a data warehouse can be constructed for existing ecological data, whether as part of a DSS or a tool for viewing research data.Symbolic aggregate approximationBioacousticsDecision support systemData warehouseFuzzy logicBirdsAutonomous recording unitsPiecewise aggregate approximatio

    Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location

    Full text link
    [EN] A large volume of the water produced for public supply is lost in the systems between sources and consumers. An important-in many cases the greatest-fraction of these losses are physical losses, mainly related to leaks and bursts in pipes and in consumer connections. Fast detection and location of bursts plays an important role in the design of operation strategies for water loss control, since this helps reduce the volume lost from the instant the event occurs until its effective repair (run time). The transient pressure signals caused by bursts contain important information about their location and magnitude, and stamp on any of these events a specific "hydraulic signature". The present work proposes and evaluates three methods to disaggregate transient signals, which are used afterwards to train artificial neural networks (ANNs) to identify burst locations and calculate the leaked flow. In addition, a clustering process is also used to group similar signals, and then train specific ANNs for each group, thus improving both the computational efficiency and the location accuracy. The proposed methods are applied to two real distribution networks, and the results show good accuracy in burst location and characterization.Manzi, D.; Brentan, BM.; Meirelles, G.; Izquierdo Sebastián, J.; Luvizotto Jr., E. (2019). Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location. Water. 11(11):1-13. https://doi.org/10.3390/w11112279S1131111Creaco, E., & Walski, T. (2017). Economic Analysis of Pressure Control for Leakage and Pipe Burst Reduction. Journal of Water Resources Planning and Management, 143(12), 04017074. doi:10.1061/(asce)wr.1943-5452.0000846Campisano, A., Creaco, E., & Modica, C. (2010). RTC of Valves for Leakage Reduction in Water Supply Networks. Journal of Water Resources Planning and Management, 136(1), 138-141. doi:10.1061/(asce)0733-9496(2010)136:1(138)Campisano, A., Modica, C., Reitano, S., Ugarelli, R., & Bagherian, S. (2016). Field-Oriented Methodology for Real-Time Pressure Control to Reduce Leakage in Water Distribution Networks. Journal of Water Resources Planning and Management, 142(12), 04016057. doi:10.1061/(asce)wr.1943-5452.0000697Vítkovský, J. P., Simpson, A. R., & Lambert, M. F. (2000). Leak Detection and Calibration Using Transients and Genetic Algorithms. Journal of Water Resources Planning and Management, 126(4), 262-265. doi:10.1061/(asce)0733-9496(2000)126:4(262)Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., & Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157-1167. doi:10.1016/j.conengprac.2011.06.004Jung, D., & Kim, J. (2017). Robust Meter Network for Water Distribution Pipe Burst Detection. Water, 9(11), 820. doi:10.3390/w9110820Colombo, A. F., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-environment Research, 2(4), 212-227. doi:10.1016/j.jher.2009.02.003Choi, D., Kim, S.-W., Choi, M.-A., & Geem, Z. (2016). Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System. Water, 8(4), 142. doi:10.3390/w8040142Christodoulou, S. E., Kourti, E., & Agathokleous, A. (2016). Waterloss Detection in Water Distribution Networks using Wavelet Change-Point Detection. Water Resources Management, 31(3), 979-994. doi:10.1007/s11269-016-1558-5Guo, X., Yang, K., & Guo, Y. (2012). Leak detection in pipelines by exclusively frequency domain method. Science China Technological Sciences, 55(3), 743-752. doi:10.1007/s11431-011-4707-3Holloway, M. B., & Hanif Chaudhry, M. (1985). Stability and accuracy of waterhammer analysis. Advances in Water Resources, 8(3), 121-128. doi:10.1016/0309-1708(85)90052-1Sanz, G., Pérez, R., Kapelan, Z., & Savic, D. (2016). Leak Detection and Localization through Demand Components Calibration. Journal of Water Resources Planning and Management, 142(2), 04015057. doi:10.1061/(asce)wr.1943-5452.0000592Zhang, Q., Wu, Z. Y., Zhao, M., Qi, J., Huang, Y., & Zhao, H. (2016). Leakage Zone Identification in Large-Scale Water Distribution Systems Using Multiclass Support Vector Machines. Journal of Water Resources Planning and Management, 142(11), 04016042. doi:10.1061/(asce)wr.1943-5452.0000661Mounce, S. R., & Machell, J. (2006). Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water Journal, 3(1), 21-31. doi:10.1080/15730620600578538Covas, D., Ramos, H., & de Almeida, A. B. (2005). Standing Wave Difference Method for Leak Detection in Pipeline Systems. Journal of Hydraulic Engineering, 131(12), 1106-1116. doi:10.1061/(asce)0733-9429(2005)131:12(1106)Liggett, J. A., & Chen, L. (1994). Inverse Transient Analysis in Pipe Networks. Journal of Hydraulic Engineering, 120(8), 934-955. doi:10.1061/(asce)0733-9429(1994)120:8(934)Caputo, A. C., & Pelagagge, P. M. (2002). An inverse approach for piping networks monitoring. Journal of Loss Prevention in the Process Industries, 15(6), 497-505. doi:10.1016/s0950-4230(02)00036-0Van Zyl, J. E. (2014). Theoretical Modeling of Pressure and Leakage in Water Distribution Systems. Procedia Engineering, 89, 273-277. doi:10.1016/j.proeng.2014.11.187Izquierdo, J., & Iglesias, P. . (2004). Mathematical modelling of hydraulic transients in complex systems. Mathematical and Computer Modelling, 39(4-5), 529-540. doi:10.1016/s0895-7177(04)90524-9Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144. doi:10.1007/s10618-007-0064-zNavarrete-López, C., Herrera, M., Brentan, B., Luvizotto, E., & Izquierdo, J. (2019). Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework. Water, 11(2), 246. doi:10.3390/w11020246Meirelles, G., Manzi, D., Brentan, B., Goulart, T., & Luvizotto, E. (2017). Calibration Model for Water Distribution Network Using Pressures Estimated by Artificial Neural Networks. Water Resources Management, 31(13), 4339-4351. doi:10.1007/s11269-017-1750-2Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28-40. doi:10.1016/j.jhydrol.2011.06.013Brentan, B., Meirelles, G., Luvizotto, E., & Izquierdo, J. (2018). Hybrid SOM+ k -Means clustering to improve planning, operation and management in water distribution systems. Environmental Modelling & Software, 106, 77-88. doi:10.1016/j.envsoft.2018.02.013Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3(1), 1-27. doi:10.1080/0361092740882710

    Pattern recognition and clustering of transient pressure signals for burst location

    Get PDF
    A large volume of the water produced for public supply is lost in the systems between sources and consumers. An important-in many cases the greatest-fraction of these losses are physical losses, mainly related to leaks and bursts in pipes and in consumer connections. Fast detection and location of bursts plays an important role in the design of operation strategies for water loss control, since this helps reduce the volume lost from the instant the event occurs until its effective repair (run time). The transient pressure signals caused by bursts contain important information about their location and magnitude, and stamp on any of these events a specific "hydraulic signature". The present work proposes and evaluates three methods to disaggregate transient signals, which are used afterwards to train artificial neural networks (ANNs) to identify burst locations and calculate the leaked flow. In addition, a clustering process is also used to group similar signals, and then train specific ANNs for each group, thus improving both the computational efficiency and the location accuracy. The proposed methods are applied to two real distribution networks, and the results show good accuracy in burst location and characterization111

    Structure and representation of ecological data to support knowledge discovery: A case study with bioacoustic data

    Get PDF
    Bird communities have long been surveyed as key indicators of ecosystem health and biodiversity. Adoption of Autonomous Recording Units (ARUs) to perform avian surveys has shifted the burden of species recognition from “birders” in the field, to “listeners” who review the ARU recordings at a later time. The number of recordings ARUs can produce has created a need to process large amounts of data. Although much research is devoted to fully automating the recognition process, expert humans are still required when entire bird communities must be identified. A framework for a Decision Support System (DSS) is presented which would assist listeners by suggesting likely species. A unique feature of the DSS is the consideration of the recording “context” of time, location and habitat as well as the bioacoustic features to match unknown vocalizations with reference species. In this thesis a data warehouse was built for an existing set of bioacoustic research data as a first–step to creating the DSS. The data set was from ARU deployments in the Lower Athabasca Region of Alberta, Canada. The Knowledge Discovery in Databases (KDD) and Dimensional Design Process protocols were used as guides to build a Kimball–style data warehouse. Data housed in the data warehouse included field data, data derived from GIS analysis, fuzzy logic memberships and symbolic representation of bioacoustic recording using the Piecewise Aggregate Approximation and Symbolic Aggregate approXimation (PAA/SAX). Examples of how missing and erroneous data were detected and processed are given. The sources of uncertainty inherent in ecological data are discussed and fuzzy logic is demonstrated as a soft–computing technique to accommodate this data. Data warehouses are commonly used for business applications but are very applicable for ecological data. As most instructions on building data warehouse are for business data, this thesis is offered as an example for ecologists interested in moving their data to a data warehouse. This thesis presents a case–study of how a data warehouse can be constructed for existing ecological data, whether as part of a DSS or a tool for viewing research data.Symbolic aggregate approximationBioacousticsDecision support systemData warehouseFuzzy logicBirdsAutonomous recording unitsPiecewise aggregate approximatio

    A Fuzzy Shape-Based Anomaly Detection and its Application to Electromagnetic Data

    Get PDF

    Data processing of high-rate low-voltage distribution grid recordings for smart grid monitoring and analysis

    Get PDF
    Power networks will change from a rigid hierarchic architecture to dynamic interconnected smart grids. In traditional power grids, the frequency is the controlled quantity to maintain supply and load power balance. Thereby, high rotating mass inertia ensures for stability. In the future, system stability will have to rely more on real-time measurements and sophisticated control, especially when integrating fluctuating renewable power sources or high-load consumers like electrical vehicles to the low-voltage distribution grid. In the present contribution, we describe a data processing network for the in-house developed low-voltage, high-rate measurement devices called electrical data recorder (EDR). These capture units are capable of sending the full high-rate acquisition data for permanent storage in a large-scale database. The EDR network is specifically designed to serve for reliable and secured transport of large data, live performance monitoring, and deep data mining. We integrate dedicated different interfaces for statistical evaluation, big data queries, comparative analysis, and data integrity tests in order to provide a wide range of useful post-processing methods for smart grid analysis. We implemented the developed EDR network architecture for high-rate measurement data processing and management at different locations in the power grid of our Institute. The system runs stable and successfully collects data since several years. The results of the implemented evaluation functionalities show the feasibility of the implemented methods for signal processing, in view of enhanced smart grid operation. © 2015, Maaß et al.; licensee Springer

    NP-Free: A Real-Time Normalization-free and Parameter-tuning-free Representation Approach for Open-ended Time Series

    Full text link
    As more connected devices are implemented in a cyber-physical world and data is expected to be collected and processed in real time, the ability to handle time series data has become increasingly significant. To help analyze time series in data mining applications, many time series representation approaches have been proposed to convert a raw time series into another series for representing the original time series. However, existing approaches are not designed for open-ended time series (which is a sequence of data points being continuously collected at a fixed interval without any length limit) because these approaches need to know the total length of the target time series in advance and pre-process the entire time series using normalization methods. Furthermore, many representation approaches require users to configure and tune some parameters beforehand in order to achieve satisfactory representation results. In this paper, we propose NP-Free, a real-time Normalization-free and Parameter-tuning-free representation approach for open-ended time series. Without needing to use any normalization method or tune any parameter, NP-Free can generate a representation for a raw time series on the fly by converting each data point of the time series into a root-mean-square error (RMSE) value based on Long Short-Term Memory (LSTM) and a Look-Back and Predict-Forward strategy. To demonstrate the capability of NP-Free in representing time series, we conducted several experiments based on real-world open-source time series datasets. We also evaluated the time consumption of NP-Free in generating representations.Comment: 9 pages, 12 figures, 9 tables, and this paper was accepted by 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC 2023
    • …
    corecore