87 research outputs found

    Generalized Low-Density Parity-Check Codes: Construction and Decoding Algorithms

    Get PDF
    Scientists have competed to find codes that can be decoded with optimal decoding algorithms. Generalized LDPC codes were found to compare well with such codes. LDPC codes are well treated with both types of decoding; HDD and SDD. On the other hand GLDPC codes iterative decoding, on both AWGN and BSC channels, was not sufficiently investigated in the literature. This chapter first describes its construction then discusses its iterative decoding algorithms on both channels so far. The SISO decoders, of GLDPC component codes, show excellent error performance with moderate and high code rate. However, the complexities of such decoding algorithms are very high. When the HDD BF algorithm presented to LDPC for its simplicity and speed, it was far from the BSC capacity. Therefore involving LDPC codes in optical systems using such algorithms is a wrong choice. GLDPC codes can be introduced as a good alternative of LDPC codes as their performance under BF algorithm can be improved and they would then be a competitive choice for optical communications. This chapter will discuss the iterative HDD algorithms that improve decoding error performance of GLDPC codes. SDD algorithms that maintain the performance but lowering decoding simplicity are also described

    Source Coding with Side Information at the Decoder and Uncertain Knowledge of the Correlation

    No full text
    International audienceThis paper considers the problem of lossless source coding with side information at the decoder, when the correlation model between the source and the side information is uncertain. Four parametrized models representing the correlation between the source and the side information are introduced. The uncertainty on the correlation appears through the lack of knowledge on the value of the parameters. For each model, we propose a practical coding scheme based on non-binary Low Density Parity Check Codes and able to deal with the parameter uncertainty. At the encoder, the choice of the coding rate results from an information theoretical analysis. Then we propose decoding algorithms that jointly estimate the source vector and the parameters. As the proposed decoder is based on the Expectation-Maximization algorithm, which is very sensitive to initialization, we also propose a method to produce first a coarse estimate of the parameters

    Secure Key Encapsulation Mechanism with Compact Ciphertext and Public Key from Generalized Srivastava code

    Get PDF
    Code-based public key cryptosystems have been found to be an interesting option in the area of Post-Quantum Cryptography. In this work, we present a key encapsulation mechanism (KEM) using a parity check matrix of the Generalized Srivastava code as the public key matrix. Generalized Srivastava codes are privileged with the decoding technique of Alternant codes as they belong to the family of Alternant codes. We exploit the dyadic structure of the parity check matrix to reduce the storage of the public key. Our encapsulation leads to a shorter ciphertext as compared to DAGS proposed by Banegas et al. in Journal of Mathematical Cryptology which also uses Generalized Srivastava code. Our KEM provides IND-CCA security in the random oracle model. Also, our scheme can be shown to achieve post-quantum security in the quantum random oracle model

    Advanced channel coding techniques using bit-level soft information

    Get PDF
    In this dissertation, advanced channel decoding techniques based on bit-level soft information are studied. Two main approaches are proposed: bit-level probabilistic iterative decoding and bit-level algebraic soft-decision (list) decoding (ASD). In the first part of the dissertation, we first study iterative decoding for high density parity check (HDPC) codes. An iterative decoding algorithm, which uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix adapted in each decoding iteration according to the bit-level reliabilities is proposed. In contrast to the common belief that iterative decoding is not suitable for HDPC codes, this bit-level reliability based adaptation procedure is critical to the conver-gence behavior of iterative decoding for HDPC codes and it significantly improves the iterative decoding performance of Reed-Solomon (RS) codes, whose parity check matrices are in general not sparse. We also present another iterative decoding scheme for cyclic codes by randomly shifting the bit-level reliability values in each iteration. The random shift based adaptation can also prevent iterative decoding from getting stuck with a significant complexity reduction compared with the reliability based parity check matrix adaptation and still provides reasonable good performance for short-length cyclic codes. In the second part of the dissertation, we investigate ASD for RS codes using bit-level soft information. In particular, we show that by carefully incorporating bit¬level soft information in the multiplicity assignment and the interpolation step, ASD can significantly outperform conventional hard decision decoding (HDD) for RS codes with a very small amount of complexity, even though the kernel of ASD is operating at the symbol-level. More importantly, the performance of the proposed bit-level ASD can be tightly upper bounded for practical high rate RS codes, which is in general not possible for other popular ASD schemes. Bit-level soft-decision decoding (SDD) serves as an efficient way to exploit the potential gain of many classical codes, and also facilitates the corresponding per-formance analysis. The proposed bit-level SDD schemes are potential and feasible alternatives to conventional symbol-level HDD schemes in many communication sys-tems
    corecore