518 research outputs found

    Piecewise mapping in HEVC lossless intra-prediction coding

    Get PDF
    The lossless intra-prediction coding modality of the High Efficiency Video Coding (HEVC) standard provides high coding performance while following frame-by-frame basis access to the coded data. This is of interest in many professional applications such as medical imaging, automotive vision and digital preservation in libraries and archives. Various improvements to lossless intra-prediction coding have been proposed recently, most of them based on sample-wise prediction using Differential Pulse Code Modulation (DPCM). Other recent proposals aim at further reducing the energy of intra-predicted residual blocks. However, the energy reduction achieved is frequently minimal due to the difficulty of correctly predicting the sign and magnitude of residual values. In this paper, we pursue a novel approach to this energy-reduction problem using piecewise mapping (pwm) functions. Specifically, we analyze the range of values in residual blocks and apply accordingly a pwm function to map specific residual values to unique lower values. We encode appropriate parameters associated with the pwm functions at the encoder, so that the corresponding inverse pwm functions at the decoder can map values back to the same residual values. These residual values are then used to reconstruct the original signal. This mapping is, therefore, reversible and introduces no losses. We evaluate the pwm functions on 4×4 residual blocks computed after DPCM-based prediction for lossless coding of a variety of camera-captured and screen content sequences. Evaluation results show that the pwm functions can attain maximum bit-rate reductions of 5.54% and 28.33% for screen content material compared to DPCM-based and block-wise intra-prediction, respectively. Compared to IntraBlock Copy, piecewise mapping can attain maximum bit-rate reductions of 11.48% for camera-captured material

    Distributed Video Coding: Iterative Improvements

    Get PDF

    The 1995 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Data compression using adaptive transform coding. Appendix 1: Item 1

    Get PDF
    Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate

    Distributed Video Coding for Multiview and Video-plus-depth Coding

    Get PDF

    Empirical analysis of BWT-based lossless image compression

    Get PDF
    The Burrows-Wheeler Transformation (BWT) is a text transformation algorithm originally designed to improve the coherence in text data. This coherence can be exploited by compression algorithms such as run-length encoding or arithmetic coding. However, there is still a debate on its performance on images. Motivated by a theoretical analysis of the performance of BWT and MTF, we perform a detailed empirical study on the role of MTF in compressing images with the BWT. This research studies the compression performance of BWT on digital images using different predictors and context partitions. The major interest of the research is in finding efficient ways to make BWT suitable for lossless image compression.;This research studied three different approaches to improve the compression of image data by BWT. First, the idea of preprocessing the image data before sending it to the BWT compression scheme is studied by using different mapping and prediction schemes. Second, different variations of MTF were investigated to see which one works best for Image compression with BWT. Third, the concept of context partitioning for BWT output before it is forwarded to the next stage in the compression scheme.;For lossless image compression, this thesis proposes the removal of the MTF stage from the BWT compression pipeline and the usage of context partitioning method. The compression performance is further improved by using MED predictor on the image data along with the 8-bit mapping of the prediction residuals before it is processed by BWT.;This thesis proposes two schemes for BWT-based image coding, namely BLIC and BLICx, the later being based on the context-ordering property of the BWT. Our methods outperformed other text compression algorithms such as PPM, GZIP, direct BWT, and WinZip in compressing images. Final results showed that our methods performed better than the state of the art lossless image compression algorithms, such as JPEG-LS, JPEG2000, CALIC, EDP and PPAM on the natural images

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC)
    • …
    corecore