30 research outputs found

    Fuzzy Intervals for Designing Structural Signature: An Application to Graphic Symbol Recognition

    Get PDF
    Revised selected papers from Eighth IAPR International Workshop on Graphics RECognition (GREC) 2009.The motivation behind our work is to present a new methodology for symbol recognition. The proposed method employs a structural approach for representing visual associations in symbols and a statistical classifier for recognition. We vectorize a graphic symbol, encode its topological and geometrical information by an attributed relational graph and compute a signature from this structural graph. We have addressed the sensitivity of structural representations to noise, by using data adapted fuzzy intervals. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set. The Bayesian network is deployed in a supervised learning scenario for recognizing query symbols. The method has been evaluated for robustness against degradations & deformations on pre-segmented 2D linear architectural & electronic symbols from GREC databases, and for its recognition abilities on symbols with context noise i.e. cropped symbols

    Employing fuzzy intervals and loop-based methodology for designing structural signature: an application to symbol recognition

    Full text link
    Motivation of our work is to present a new methodology for symbol recognition. We support structural methods for representing visual associations in graphic documents. The proposed method employs a structural approach for symbol representation and a statistical classifier for recognition. We vectorize a graphic symbol, encode its topological and geometrical information by an ARG and compute a signature from this structural graph. To address the sensitivity of structural representations to deformations and degradations, we use data adapted fuzzy intervals while computing structural signature. The joint probability distribution of signatures is encoded by a Bayesian network. This network in fact serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures, for underlying symbol set. Finally we deploy the Bayesian network in supervised learning scenario for recognizing query symbols. We have evaluated the robustness of our method against noise, on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates. A second set of experimentation was carried out for evaluating the performance of our method against context noise i.e. symbols cropped from complete documents. The results support the use of our signature by a symbol spotting system.Comment: 10 pages, Eighth IAPR International Workshop on Graphics RECognition (GREC), 2009, volume 8, 22-3

    BoR: Bag-of-Relations for Symbol Retrieval

    Get PDF
    International audienceIn this paper, we address a new scheme for symbol retrieval based on bag-of-relations (BoRs) which are computed between extracted visual primitives (e.g. circle and corner). Our features consist of pairwise spatial relations from all possible combinations of individual visual primitives. The key characteristic of the overall process is to use topological relation information indexed in bags-of-relations and use this for recognition. As a consequence, directional relation matching takes place only with those candidates having similar topological configurations. A comprehensive study is made by using several different well known datasets such as GREC, FRESH and SESYD, and includes a comparison with state-of-the-art descriptors. Experiments provide interesting results on symbol spotting and other user-friendly symbol retrieval applications

    Graphics Recognition -- from Re-engineering to Retrieval

    Get PDF
    Invited talk. Colloque avec actes et comité de lecture. internationale.International audienceIn this paper, we discuss how the focus in document analysis, generally speaking, and in graphics recognition more specifically, has moved from re-engineering problems to indexing and information retrieval. After a review of ongoing work on these topics, we propose some challenges for the years to come

    Musings on Symbol Recognition

    Get PDF
    This paper does not pretend to be yet another survey on symbol recognition methods. It will rather try to take a step back, look at the main efforts done in that area throughout the years and propose some interesting directions to investigate

    Un état de l'art des méthodes de localisation de symboles dans les documents graphiques

    Get PDF
    International audienceIn this paper, we present a survey on symbol spotting methods for graphical documents. We classify these methods into two categories: structural and pixel-based approaches. Structural approaches are often based on graphs representations and frequently need a preliminary segmentation step in order to break documents into primitives. A symbol is then detected by regrouping neighbouring primitives under certain conditions. In pixel-based approaches, the symbol spotting is performed directly on the entire images without a preliminary segmentation step.Dans cet article, nous proposons un panorama de méthodes de localisation de symboles dans les documents graphiques. Nous les divisons suivant deux catégories : les approches structurelles et les pixelaires. Les approches structurelles sont basées souvent sur des représentations de types graphes et possèdent généralement une étape de segmentation préalable des documents en primitives. Le symbole est ensuite détecté via une étape de regroupements de primitives et sous certaines conditions. Dans les approches pixelaires, la localisation est effectuée directement sur les documents sans étape préalable de segmentation

    Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordDocument pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE). Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support vector machine, our proposed PSGE has outperformed the state-of-The-art results in recognition of handwritten words as well as graphical symbols.European Union Horizon 2020Ministerio de Educación, Cultura y Deporte, SpainRamon y Cajal FellowshipCERCA Program/Generalitat de Cataluny

    A Symbol Spotting Approach Based on the Vector Model and a Visual Vocabulary

    Get PDF
    This paper addresses the difficult problem of symbol spotting for graphic documents. We propose an approach where each graphic document is indexed as a text document by using the vector model and an inverted file structure. The method relies on a visual vocabulary built from a shape descriptor adapted to the document level and invariant under classical geometric transforms (rotation, scaling and translation). Regions of interest selected with high degree of confidence using a voting strategy are considered as occurrences of a query symbol. Experimental results are promising and show the feasibility of our approach

    Integrating Vocabulary Clustering with Spatial Relations for Symbol Recognition

    Get PDF
    International audienceThis paper develops a structural symbol recognition method with integrated statistical features. It applies spatial organization descriptors to the identified shape features within a fixed visual vocabulary that compose a symbol. It builds an attributed relational graph expressing the spatial relations between those visual vocabulary elements. In order to adapt the chosen vocabulary features to multiple and possible specialized contexts, we study the pertinence of unsupervised clustering to capture significant shape variations within a vocabulary class and thus refine the discriminative power of the method. This unsupervised clustering relies on cross-validation between several different cluster indices. The resulting approach is capable of determining part of the pertinent vocabulary and significantly increases recognition results with respect to the state-of-the-art. It is experimentally validated on complex electrical wiring diagram symbols

    Symbol Recognition: Current Advances and Perspectives

    Get PDF
    Abstract. The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content
    corecore