235 research outputs found

    Performance of self bit synchronizers for the detection of anticorrelated binary signals

    Get PDF
    Self bit synchronizers for detection of anticorrelated binary systems of digital communication system

    Frame synchronization for PSAM in AWGN and Rayleigh fading channels

    Get PDF
    Pilot Symbol Assisted Modulation (PSAM) is a good method to compensate for the channel fading effect in wireless mobile communications. In PSAM, known pilot symbols are periodically inserted into the transmitted data symbol stream and the receiver uses these symbols to derive amplitude and phase reference. One aspect of this procedure, which has not received much attention yet, is the frame synchronization, i.e. the method used by the receiver to locate the time position of the pilot symbols. In this study, two novel non-coherent frame synchronization methods are introduced in which only the magnitude of received signal is used to obtain the timing of the pilot symbol. The methods are evaluated for both AWGN and frequency non-selective slow Rayleigh fading channels. One synchronization technique is derived by standard maximum likelihood (ML) estimation formulation, and the other is obtained by using maximum a Posteriori probability (MAP) with a threshold test. Signal processing in the receiver uses simplifying approximations that rely on relatively high signal-to-noise ratio (SNR) as consistent with the reception of 16-QAM. Computer simulation has been used to test the acquisition time performance and the probability of false acquisition. Several lengths and patterns of pilot symbol sequences were tested where every 10th symbol was a pilot symbol and all other symbols were randomly selected data symbols. When compared with the other published synchronizers, results from this study show better performance in both AWGN and fading channels. Significantly better performance is observed in the presence of receiver frequency offsets

    Coded spread spectrum digital transmission system design study

    Get PDF
    Results are presented of a comprehensive study of the performance of Viterbi-decoded convolutional codes in the presence of nonideal carrier tracking and bit synchronization. A constraint length 7, rate 1/3 convolutional code and parameters suitable for the space shuttle coded communications links are used. Mathematical models are developed and theoretical and simulation results are obtained to determine the tracking and acquisition performance of the system. Pseudorandom sequence spread spectrum techniques are also considered to minimize potential degradation caused by multipath

    FPGA-based DOCSIS upstream demodulation

    Get PDF
    In recent years, the state-of-the-art in field programmable gate array (FPGA) technology has been advancing rapidly. Consequently, the use of FPGAs is being considered in many applications which have traditionally relied upon application-specific integrated circuits (ASICs). FPGA-based designs have a number of advantages over ASIC-based designs, including lower up-front engineering design costs, shorter time-to-market, and the ability to reconfigure devices in the field. However, ASICs have a major advantage in terms of computational resources. As a result, expensive high performance ASIC algorithms must be redesigned to fit the limited resources available in an FPGA. Concurrently, coaxial cable television and internet networks have been undergoing significant upgrades that have largely been driven by a sharp increase in the use of interactive applications. This has intensified demand for the so-called upstream channels, which allow customers to transmit data into the network. The format and protocol of the upstream channels are defined by a set of standards, known as DOCSIS 3.0, which govern the flow of data through the network. Critical to DOCSIS 3.0 compliance is the upstream demodulator, which is responsible for the physical layer reception from all customers. Although upstream demodulators have typically been implemented as ASICs, the design of an FPGA-based upstream demodulator is an intriguing possibility, as FPGA-based demodulators could potentially be upgraded in the field to support future DOCSIS standards. Furthermore, the lower non-recurring engineering costs associated with FPGA-based designs could provide an opportunity for smaller companies to compete in this market. The upstream demodulator must contain complicated synchronization circuitry to detect, measure, and correct for channel distortions. Unfortunately, many of the synchronization algorithms described in the open literature are not suitable for either upstream cable channels or FPGA implementation. In this thesis, computationally inexpensive and robust synchronization algorithms are explored. In particular, algorithms for frequency recovery and equalization are developed. The many data-aided feedforward frequency offset estimators analyzed in the literature have not considered intersymbol interference (ISI) caused by micro-reflections in the channel. It is shown in this thesis that many prominent frequency offset estimation algorithms become biased in the presence of ISI. A novel high-performance frequency offset estimator which is suitable for implementation in an FPGA is derived from first principles. Additionally, a rule is developed for predicting whether a frequency offset estimator will become biased in the presence of ISI. This rule is used to establish a channel excitation sequence which ensures the proposed frequency offset estimator is unbiased. Adaptive equalizers that compensate for the ISI take a relatively long time to converge, necessitating a lengthy training sequence. The convergence time is reduced using a two step technique to seed the equalizer. First, the ISI equivalent model of the channel is estimated in response to a specific short excitation sequence. Then, the estimated channel response is inverted with a novel algorithm to initialize the equalizer. It is shown that the proposed technique, while inexpensive to implement in an FPGA, can decrease the length of the required equalizer training sequence by up to 70 symbols. It is shown that a preamble segment consisting of repeated 11-symbol Barker sequences which is well-suited to timing recovery can also be used effectively for frequency recovery and channel estimation. By performing these three functions sequentially using a single set of preamble symbols, the overall length of the preamble may be further reduced

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Digital simulation of a signal conditioner/bit synchronizer

    Get PDF
    A bit rate filter type signal conditioner/bit synchronizer used in a split-phase PCM system is modeled digitally in three stages to determine overall system performance. General computer algorithms are developed to approximate independent operation of each major segment within the device. Bit rate effects and signal time-base error are investigated yielding the characteristic G-curves for the phase detector. These characteristics facilitate subsequent analysis of a linear equivalent digital-data-transition tracking phase-locked loop under several typical time-base error input conditions. Using bit error probabilities as performance criteria, the conditioner/synchronizer is found to perform adequately at signal-to-noise ratios exceeding +10dB. For inputs below this value, the detection capability deteriorates rapidly with decreasing signal levels --Abstract, page ii

    Synchronization for capacity -approaching coded communication systems

    Get PDF
    The dissertation concentrates on synchronization of capacity approaching error-correction codes that are deployed in noisy channels with very low signal-to-noise ratio (SNR). The major topics are symbol timing synchronization and frame synchronization.;Capacity-approaching error-correction codes, like turbo codes and low-density parity-check (LDPC) codes, are capable of reaching very low bit error rates and frame error rates in noisy channels by iterative decoding. To fully achieve the potential decoding capability of Turbo codes and LDPC codes, proper symbol timing synchronization, frame synchronization and channel state estimation are required. The dissertation proposes a joint estimator of symbol time delay and channel SNR for symbol timing recovery, and a maximum a posteriori (MAP) frame synchronizer for frame synchronization.;Symbol timing recovery is implemented by sampling and interpolation. The received signal is sampled multiple times per symbol period with unknown delay and unknown SNR. A joint estimator estimates the time delay and the SNR. The signal is rebuilt by interpolating available samples using estimated time delay. The intermediate decoding results enable decision-feedback estimation. The estimates of time delay and SNR are refined by iterative processing. This refinement improves the system performance significantly.;Usually the sampling rate is assumed to be a strict integer multiple of the symbol rate. However, in a practical system the local oscillators in the transmitter and the receiver may have random drifts. Therefore the sampling rate is no longer an exact multiple of the symbol rate, and the sampling time follows a random walk. This random walk may harm the system performance severely. The dissertation analyzes the effect of random time walks and proposes to mitigate the effect by overlapped sliding windows and iterative processing.;Frame synchronization is required to find the correct boundaries of codewords. MAP frame synchronization in the sense of minimizing the frame sync failure rate is investigated. The MAP frame synchronizer explores low-density parity-check attributes of the capacity-approaching codes. The accuracy of frame synchronization is adequate for considered coded systems to work reliably under very low SNR

    TDRSS data handling and management system study. Ground station systems for data handling and relay satellite control

    Get PDF
    Results of a two-phase study of the (Data Handling and Management System DHMS) are presented. An original baseline DHMS is described. Its estimated costs are presented in detail. The DHMS automates the Tracking and Data Relay Satellite System (TDRSS) ground station's functions and handles both the forward and return link user and relay satellite data passing through the station. Direction of the DHMS is effected via a TDRSS Operations Control Central (OCC) that is remotely located. A composite ground station system, a modified DHMS (MDHMS), was conceptually developed. The MDHMS performs both the DHMS and OCC functions. Configurations and costs are presented for systems using minicomputers and midicomputers. It is concluded that a MDHMS should be configured with a combination of the two computer types. The midicomputers provide the system's organizational direction and computational power, and the minicomputers (or interface processors) perform repetitive data handling functions that relieve the midicomputers of these burdensome tasks
    • …
    corecore